, Volume 13, Issue 5–6, pp 425–437 | Cite as

Argon and krypton adsorption on templated mesoporous silicas: molecular simulation and experiment

  • Francisco R. Hung
  • Supriyo Bhattacharya
  • Benoit Coasne
  • Matthias Thommes
  • Keith E. GubbinsEmail author


In this work we report molecular simulation results for argon and krypton adsorption on atomistic models of templated mesoporous silica materials. These models add atomistic levels of detail to mesoscale representations of these porous materials, which were originally generated from lattice Monte Carlo simulations mimicking the synthesis process of templated mesoporous silicas. We generate our atomistic pore models by carving out of a silica block a ‘mathematically-smooth’ representation of the pores from lattice MC simulations. Following that procedure, we obtain a model material with mean mesopore and micropore diameters of 5.4 nm and 1.1 nm, respectively (model A). Two additional model materials were considered: one with no microporosity, and with mesopores similar to those of model A (model B), and a regular cylindrical pore (model C). Simulation results for Ar and Kr adsorption on these model materials at 77 K and 87 K shows that model A provides the best agreement with experimental data; however, our results suggest that fine-tuning the microporosity and/or the surface chemistry (i.e., by decreasing the density of OH groups at the pore surface) of model A can lead to better agreement with experiments. The filling of the mesopores in model materials A and B proceeded via a classical capillary condensation mechanism, where the pores fill at slightly different pressures. This observation contrasts with what was observed in our previous study (Coasne, et al. in Langmuir 22:194–202, 2006), where we considered atomistic silica mesopores with an important degree of surface roughness at length scales below 10 Å, for which we observed a quasi-continuous mesopore filling involving intermediate phases with liquid-like “bridges” and gas-like regions. These results suggest that pore surface roughness, and other morphological features such as constrictions, play an important role in the mechanism of adsorption and filling of the mesopores.


Templated mesoporous silica materials MCM-41 SBA-15 Gas adsorption Molecular simulation Monte Carlo 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal, R., Kofke, D.A.: Thermodynamic and structural properties of model systems at solid-fluid coexistence, II: melting and sublimation of the Lennard–Jones system. Mol. Phys. 85, 43–59 (1995) CrossRefGoogle Scholar
  2. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Clarendon, Oxford (1987) Google Scholar
  3. Berenguer-Murcia, Á., García-Martínez, J., Cazorla-Amorós, D., Martínez-Alonso, A., Tascón, J.M.D., Linares-Solano, Á.: About the exclusive mesoporous character of MCM-41. Stud. Surf. Sci. Catal. 144, 83–90 (2002) CrossRefGoogle Scholar
  4. Bhattacharya, S., Gubbins, K.E.: Modeling triblock surfactant-templated mesostructured cellular foams. J. Chem. Phys. 123, 134907 (2005) CrossRefGoogle Scholar
  5. Bhattacharya, S., Gubbins, K.E.: Fast method for computing pore size distributions of model materials. Langmuir 22, 7726–7731 (2006) CrossRefGoogle Scholar
  6. Bhattacharya, S., Coasne, B., Hung, F.R., Gubbins, K.E.: Molecular modeling of templated mesoporous materials, SBA-15, I: from mesoscopic to molecular models. Langmuir (2007, to be submitted) Google Scholar
  7. Bock, H., Schoen, M.: Phase behavior of a simple fluid confined between chemically corrugated substrates. Phys. Rev. E 59, 4122–4136 (1999) CrossRefGoogle Scholar
  8. Chiu, C.Y., Chiang, A.S.T., Chao, K.J.: Mesoporous silica powders and films—pore size characterization by krypton adsorption. Microporous Mesoporous Mater. 91, 244–253 (2006) CrossRefGoogle Scholar
  9. Ciesla, U., Schüth, F.: Ordered mesoporous materials. Microporous Mesoporous Mater. 27, 131–149 (1999) CrossRefGoogle Scholar
  10. Coasne, B., Pellenq, R.J.-M.: Grand canonical Monte Carlo simulation of argon adsorption at the surface of silica nanopores: effect of pore size, pore morphology, and surface roughness. J. Chem. Phys. 120, 2913–2922 (2004a) CrossRefGoogle Scholar
  11. Coasne, B., Pellenq, R.J.-M.: A grand canonical Monte Carlo study of capillary condensation in mesoporous media: Effect of the pore morphology and topology. J. Chem. Phys. 121, 3767–3774 (2004b) CrossRefGoogle Scholar
  12. Coasne, B., Gubbins, K.E., Pellenq, R.J.-M.: A grand canonical Monte Carlo study of adsorption and capillary phenomena in nanopores of various morphologies and topologies: testing the BET and BJH characterization methods. Part. Part. Syst. Charact. 21, 149–160 (2004) CrossRefGoogle Scholar
  13. Coasne, B., Hung, F.R., Siperstein, F.R., Gubbins, K.E.: Molecular simulation of gas adsorption in realistic models of silica nanopores. Ann. Chim. Sci. Mater. 30, 375–383 (2005) CrossRefGoogle Scholar
  14. Coasne, B., Hung, F.R., Pellenq, R.J.-M., Siperstein, F.R., Gubbins, K.E.: Adsorption of simple gases in MCM-41 materials: the role of surface roughness. Langmuir 22, 194–202 (2006a) CrossRefGoogle Scholar
  15. Coasne, B., Galarneau, A., Di Renzo, F., Pellenq, R.J.-M.: Gas adsorption in mesoporous micelle-templated silicas: MCM-41, MCM-48, and SBA-15. Langmuir 22, 11097–11105 (2006b) CrossRefGoogle Scholar
  16. Coasne, B., Galarneau, A., Di Renzo, F., Pellenq, R.J.-M.: Effect of surface chemistry on the adsorption of simple fluids on silica surfaces and nanopores. Langmuir (2007, to be submitted) Google Scholar
  17. de Soler-Illia, G.J.A.A., Sanchez, C., Lebeau, B., Patarin, J.: Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev. 102, 4093–4138 (2002) CrossRefGoogle Scholar
  18. Detcheverry, F., Kierlik, E., Rosinberg, M.L., Tarjus, G.: Local mean-field study of capillary condensation in silica aerogels. Phys. Rev. E 68, 061504 (2003) CrossRefGoogle Scholar
  19. Edler, K.J., Reynolds, P.A., White, J.W.: Small-angle neutron scattering studies on the mesoporous molecular sieve MCM-41. J. Phys. Chem. B 102, 3676–3683 (1998) CrossRefGoogle Scholar
  20. Evans, R.: Fluids adsorbed in narrow pores—phase-equilibria and structure. J. Phys.: Condens. Matter 2, 8989–9007 (1990) CrossRefGoogle Scholar
  21. Frenkel, D., Smit, B.: Understanding Molecular Simulation: from Algorithms to Applications, 2nd edn. Academic Press, London (2002) Google Scholar
  22. Galarneau, A., Cambon, H., Di Renzo, F., Fajula, F.: True microporosity and surface area of mesoporous SBA-15 silicas as a function of synthesis temperature. Langmuir 17, 8328–8335 (2001) CrossRefGoogle Scholar
  23. Galarneau, A., Cambon, H., Renzo, F.D., Ryoo, R., Choi, M., Fajula, F.: Microporosity and connections between pores in SBA-15 mesostructured silicas as a function of the temperature of synthesis. New J. Chem. 27, 73–79 (2003) CrossRefGoogle Scholar
  24. Gelb, L.D.: The ins and outs of capillary condensation in cylindrical pores. Mol. Phys. 100, 2049–2057 (2002) CrossRefGoogle Scholar
  25. Gelb, L.D., Gubbins, K.E.: Characterization of porous glasses: simulation models, adsorption isotherms, and the Brunauer–Emmett–Teller analysis method. Langmuir 14, 2097–2111 (1998) CrossRefGoogle Scholar
  26. Gelb, L.D., Gubbins, K.E.: Correlation functions of adsorbed fluids in porous glass: a computer simulation study. Mol. Phys. 96, 1795–1804 (1999a) CrossRefGoogle Scholar
  27. Gelb, L.D., Gubbins, K.E.: Pore size distributions in porous glasses: a computer simulation study. Langmuir 15, 305–308 (1999b) CrossRefGoogle Scholar
  28. Gelb, L.D., Gubbins, K.E., Radhakrishnan, R., Sliwinska-Bartkowiak, M.: Phase separation in confined systems. Rep. Prog. Phys. 62, 1573–1659 (1999) CrossRefGoogle Scholar
  29. Gregg, S.J., Sing, K.S.W.: Adsorption, Surface Area and Porosity, 2nd edn. Academic Press, London (1982) Google Scholar
  30. He, Y., Seaton, N.A.: Experimental and computer simulation studies of the adsorption of ethane, carbon dioxide, and their binary mixtures in MCM-41. Langmuir 19, 10132–10138 (2003) CrossRefGoogle Scholar
  31. Hung, F.R., Coasne, B., Gubbins, K.E., Siperstein, F.R., Thommes, M., Sliwinska-Bartkowiak, M.: A Monte Carlo study of capillary condensation of krypton within realistic models of templated mesoporous silica materials. Stud. Surf. Sci. Catal. 160, 153–161 (2006) Google Scholar
  32. Imperor-Clerc, M., Davidson, P., Davidson, D.A.: Existence of a microporous corona around the mesopores of silica-based SBA-15 materials templated by triblock copolymers. J. Am. Chem. Soc. 122, 11925–11933 (2000) CrossRefGoogle Scholar
  33. Johnson, J.K., Zollweg, J.A., Gubbins, K.E.: The Lennard–Jones equation of state revisited. Mol. Phys. 78, 591–618 (1993) CrossRefGoogle Scholar
  34. Jun, S., Joo, S.H., Ryoo, R., Kruk, M., Jaroniec, M., Liu, Z., Ohsuna, T., Terasaki, O.: Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J. Am. Chem. Soc. 122, 10712–10713 (2000) CrossRefGoogle Scholar
  35. Kofke, D.A.: Direct evaluation of phase coexistence by molecular simulation via integration along the saturation line. J. Chem. Phys. 98, 4149–4162 (1993) CrossRefGoogle Scholar
  36. Koh, C.A., Montanari, T., Nooney, R.I., Tahir, S.F., Westacott, R.E.: Experimental and computer simulation studies of the removal of carbon dioxide from mixtures with methane using AlPO4-5 and MCM-41. Langmuir 15, 6043–6049 (1999) CrossRefGoogle Scholar
  37. Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S.: Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992) CrossRefGoogle Scholar
  38. Kruk, M., Jaroniec, M., Sayari, A.: Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements. Langmuir 13, 6267–6273 (1997) CrossRefGoogle Scholar
  39. Kuchta, B., Llewellyn, P., Denoyel, R., Firlej, L.: Modeling of pore wall amorphous structures: influence of wall heterogeneity on the mechanism of adsorption—krypton and argon adsorption in MCM-41 pore model. Colloid Surf. A 241, 137–142 (2004) CrossRefGoogle Scholar
  40. Landmesser, H., Kosslick, H., Storek, W., Frick, R.: Interior surface hydroxyl groups in ordered mesoporous silicates. Solid State Ionics 101–103, 271–277 (1997) Google Scholar
  41. Llewellyn, P.L., Grillet, Y., Rouquerol, J., Martin, C., Coulomb, J.-P.: Thermodynamic and structural properties of physisorbed phases within the model mesoporous adsorbent M4IS (pore diameter 2.5 nm). Surf. Sci. 352–354, 468–474 (1996) CrossRefGoogle Scholar
  42. Llewellyn, P.L., Sauerland, C., Martin, C., Grillet, Y., Coulomb, J.-P., Rouquerol, F., Rouquerol, J.: A thermodynamic investigation of physisorbed phases within the model mesoporous material: MCM-41. In: McEnaney, B., Mays, T.J., Rouquerol, J., Rodríguez-Reinoso, F., Sing, K.S.W., Unger, K.K. (eds.) Characterisation of Porous Solids IV, pp. 111–117. The Royal Society of Chemistry, Cambridge (1997) Google Scholar
  43. Lísal, M., Hall, C.K., Gubbins, K.E., Panagiotopoulos, A.Z.: Self-assembly of surfactants in a supercritical solvent from lattice Monte Carlo simulations. J. Chem. Phys. 116, 1171–1184 (2002) CrossRefGoogle Scholar
  44. Maddox, M.W., Olivier, J.P., Gubbins, K.E.: Characterization of MCM-41 using molecular simulation: heterogeneity effects. Langmuir 13, 1737–1745 (1997) CrossRefGoogle Scholar
  45. Neimark, A.V., Ravikovitch, P.I., Grün, M., Schüth, F., Unger, K.K.: Pore size analysis of MCM-41 type adsorbents by means of nitrogen and argon adsorption. J. Colloid Interface Sci. 207, 159–169 (1998) CrossRefGoogle Scholar
  46. Nicholson, D., Parsonage, N.G.: Computer Simulation and the Statistical Mechanics of Adsorption. Academic Press, London (1982) Google Scholar
  47. Pellenq, R.J.-M., Levitz, P.E.: Capillary condensation in a disordered mesoporous medium: a grand canonical Monte Carlo study. Mol. Phys. 100, 2059–2077 (2002) CrossRefGoogle Scholar
  48. Pellenq, R.J.-M., Nicholson, D.: Intermolecular potential function for the physical adsorption of rare gases in silicalite. J. Phys. Chem. 98, 13339–13349 (1994) CrossRefGoogle Scholar
  49. Piegl, L.A., Tiller, W.: The NURBS Book, 2nd edn. Springer, Berlin (1997) Google Scholar
  50. Puibasset, J.: Grand potential, Helmholtz free energy, and entropy calculation in heterogeneous cylindrical pores by the grand canonical Monte Carlo simulation method. J. Phys. Chem. B 109, 480–487 (2005a) CrossRefGoogle Scholar
  51. Puibasset, J.: Phase coexistence in heterogeneous porous media: a new extension to Gibbs ensemble Monte Carlo simulation method. J. Chem. Phys. 122, 134710 (2005b) CrossRefGoogle Scholar
  52. Rouquerol, F., Rouquerol, J., Sing, K.: Adsorption by powders and porous solids. Academic Press, London (1999) Google Scholar
  53. Ryoo, R., Ko, C.H., Kruk, M., Antochshuk, V., Jaroniec, M.: Block-copolymer-templated ordered mesoporous silica: array of uniform mesopores or mesopore-micropore network? J. Phys. Chem. B 104, 11465–11471 (2000) CrossRefGoogle Scholar
  54. Sarkisov, L., Monson, P.A.: Modeling of adsorption and desorption in pores of simple geometry using molecular dynamics. Langmuir 17, 7600–7604 (2001) CrossRefGoogle Scholar
  55. Scanu, L.F., Gubbins, K.E., Hall, C.K.: Lattice Monte Carlo simulations of phase separations and micellization in supercritical CO2/surfactant systems: effect of CO2 density. Langmuir 20, 514–523 (2004) CrossRefGoogle Scholar
  56. Schumacher, C., Gonzalez, J., Wright, P.A., Seaton, N.A.: Generation of atomistic models of periodic mesoporous silica by kinetic Monte Carlo simulation of the synthesis of the material. J. Phys. Chem. B 110, 319–333 (2006a) CrossRefGoogle Scholar
  57. Schumacher, C., Gonzalez, J., Pérez-Mendoza, M., Wright, P.A., Seaton, N.A.: Design of hybrid organic/inorganic adsorbents based on periodic mesoporous silica. Ind. Eng. Chem. Res. 45, 5586–5597 (2006b) CrossRefGoogle Scholar
  58. Schüth, F., Schmidt, W.: Microporous and mesoporous materials. Adv. Mater. 14, 629–638 (2002) CrossRefGoogle Scholar
  59. Selvam, P., Bhatia, S.K., Sonwane, C.G.: Recent advances in processing and characterization of periodic mesoporous MCM-41 silicate molecular sieves. Ind. Eng. Chem. Res. 40, 3237–3261 (2001) CrossRefGoogle Scholar
  60. Siperstein, F.R., Gubbins, K.E.: Synthesis and characterization of templated mesoporous materials using molecular simulation. Mol. Simul. 27, 339–352 (2001) CrossRefGoogle Scholar
  61. Siperstein, F.R., Gubbins, K.E.: Phase separation and liquid crystal self-assembly in surfactant-inorganic-solvent systems. Langmuir 19, 2049–2057 (2003) CrossRefGoogle Scholar
  62. Sonwane, C.G., Bhatia, S.K., Calos, N.J.: Characterization of surface roughness of MCM-41 using methods of fractal analysis. Langmuir 15, 4603–4612 (1999) CrossRefGoogle Scholar
  63. Sonwane, C.G., Jones, C.W., Ludovice, P.J.: A model for the structure of MCM-41 incorporating surface roughness. J. Phys. Chem. B 109, 23395–23404 (2005) CrossRefGoogle Scholar
  64. Takei, T., Chikazawa, M.: Measurement of pore size distribution of low-surface-area materials by krypton gas adsorption method. J. Ceram. Soc. Jpn. 106, 353–357 (1998) Google Scholar
  65. Thommes, M.: Physical adsorption characterization of ordered and amorphous mesoporous materials. In: Lu, G.Q., Zhao, X.S. (eds.) Nanoporous Materials: Science and Engineering, pp. 317–364. Imperial College Press, London (2004) Google Scholar
  66. Thommes, M., Nishiyama, N., Tanaka, S.: Aspects of a novel method for the pore size analysis of thin silica films based on krypton adsorption at liquid argon temperature (87.3 K). Stud. Surf. Sci. Catal. (2007, in press) Google Scholar
  67. Vishnyakov, A., Neimark, A.V.: Monte Carlo simulation test of pore blocking effects. Langmuir 19, 3240–3247 (2003) CrossRefGoogle Scholar
  68. Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., Stucky, G.D.: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom pores. Science 279, 548–552 (1998a) CrossRefGoogle Scholar
  69. Zhao, D., Huo, Q., Feng, J., Chmelka, B.F., Stucky, G.D.: Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 120, 6024–6036 (1998b) CrossRefGoogle Scholar
  70. Zukal, A.: Adsorption and pore condensation of krypton on mesoporous silicas at 77 K. Microporous Mesoporous Mater. 92, 220–226 (2006) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Francisco R. Hung
    • 1
  • Supriyo Bhattacharya
    • 2
    • 3
  • Benoit Coasne
    • 4
  • Matthias Thommes
    • 5
  • Keith E. Gubbins
    • 2
    Email author
  1. 1.Department of Chemical and Biological EngineeringUniversity of WisconsinMadisonUSA
  2. 2.Center for High Performance Simulation and Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighUSA
  3. 3.City of Hope National Medical CenterBeckman Research InstituteDuarteUSA
  4. 4.Institut Charles Gerhardt Montpellier, CNRS (UMR 56253)University Montpellier 2, and ENSCMMontpellierFrance
  5. 5.Quantachrome InstrumentsBoynton BeachUSA

Personalised recommendations