Adsorption

, Volume 13, Issue 5–6, pp 461–467 | Cite as

Adsorption of CO2 in metal organic frameworks of different metal centres: Grand Canonical Monte Carlo simulations compared to experiments

  • Naseem A. Ramsahye
  • Guillaume Maurin
  • Sandrine Bourrelly
  • Philip L. Llewellyn
  • Thomas Devic
  • Christian Serre
  • Thierry Loiseau
  • Gerard Ferey
Article

Abstract

A Grand Canonical Monte Carlo study has been performed in order to compare the different CO2 adsorption mechanisms between two members of the MIL-n family of hybrid metal-organic framework materials. The MIL-53 (Al) and MIL-47 (V) systems were considered. The results obtained confirm that there is a structural interchange between a large pore and narrow pore forms of MIL-53 (Al), not seen with the MIL-47 (V) material, which is a consequence of the presence of μ2-OH groups. The interactions between the CO2 molecules and these μ2 OH groups mainly govern the adsorption mechanism in this MIL-53 (Al) material. The subsequent breaking of these adsorption geometries after the adsorbate loading increases past the point where no more preferred adsorption sites are available, are proposed as key features of the breathing phenomenon. After this, any new adsorbates introduced into the MIL-53 (Al) large pore structure experience a homogeneous adsorption environment with no preferential adsorption sites in a similar way to what occurs in MIL-47 (V).

Keywords

CO2, adsorption Metal-organic frameworks Grand Canonical Monte Carlo Microcalorimetry Isotherm Differential adsorption enthalpy, adsorption mechanism, breathing effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barthelet, K., Marrot, J., Riou, D., Férey, G.: A breathing hybrid organic-inorganic solid with very large pores and high magnetic characteristics. Angew. Chem. Int. Ed. 41, 281–284 (2002) CrossRefGoogle Scholar
  2. Bourrelly, S., Llewellyn, P.L., Serre, C., Millange, F., Loiseau, T., Férey, G.: Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. J. Am. Chem. Soc. 127, 13519–13521 (2005) CrossRefGoogle Scholar
  3. Déroche, I., Gaberova, L., Maurin, G., Llewellyn, P.L., Castro, M., Wright, P.: Influence of both (Si,H+) arrangement and silicon content on the adsorption of CO2 in SAPO STA-7: Grand Canonical Monte Carlo simulations and Microcalorimetry. J. Phys. Chem. C. (2007, submitted) Google Scholar
  4. DMol3, v. Accelrys, Inc, San Diego (2005) Google Scholar
  5. Duren, T., Sarkisov, L., Yaghi, O.M., Snurr, R.Q.: Design of new materials for methane storage. Langmuir 20, 2683–2689 (2004) CrossRefGoogle Scholar
  6. Férey, G., Latroche, M., Serre, C., Millange, F., Loiseau, T., Percheron-Guégan, A.: Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C–C6H4–CO2)(M = Al3+, Cr3+). Chem. Commun. MIL-53, 2976–2977 (2003) CrossRefGoogle Scholar
  7. Férey, G., Mellot-Draznieks, C., Serre, C., Millange, F.: Crystallized frameworks with giant pores: Are there limits to the possible? Acc. Chem. Res. 38, 217–225 (2005) CrossRefGoogle Scholar
  8. Frost, H., Duren, T., Snurr, R.Q.: Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks. J. Phys. Chem. B 110, 9565–9570 (2006) CrossRefGoogle Scholar
  9. Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications. Academic, San Diego (2002) Google Scholar
  10. Hehre, W.J., Ditchfield, J.H., Pople, J.A.: Self-consistent molecular orbital methods. 12. Further extension of Gaussian-type basis sets for use in molecular-orbital studies of organic-molecules. J. Chem. Phys. 56, 2257–2261 (1972) CrossRefGoogle Scholar
  11. Kikkinides, E.S., Yang, R.T., Cho, S.H.: Concentration and recovery of CO2 from flue-gas by pressure swing adsorption. Ind. Eng. Chem. Res. 32, 2714–2720 (1993) CrossRefGoogle Scholar
  12. Latroche, M., Surble, S., Serre, C., Mellot-Draznieks, C., Llewellyn, P.L., Chang, J.S., Jhung, S.-H., Férey, G.: Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101. Angew. Chem. Int. Ed. 45, 8227–8231 (2006) CrossRefGoogle Scholar
  13. Loiseau, T., Serre, C., Huguenard, C., Fink, G., Taulelle, F., Henry, M., Bataille, T., Férey, G.: A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem. Eur. J. 10, 1373–1382 (2004) CrossRefGoogle Scholar
  14. Maurin, G., Llewellyn, P.L., Bell, R.G.: Adsorption mechanism of carbon dioxide in faujasites: Grand Canonical Monte Carlo simulations and microcalorimetry measurements. J. Phys. Chem. B 109, 16084–16091 (2005) CrossRefGoogle Scholar
  15. Mulliken, R.S.: Electron population analysis on LCAO-MO molecular wave functions. J. Chem. Phys. 23, 1833–1840 (1955) CrossRefGoogle Scholar
  16. Nicholson, D., Parsonage, N.G.: Computer Simulation and the Statistical Mechanics of Adsorption. Academic, San Diego (1982) Google Scholar
  17. Perdew, J.P., Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation-energy. Phys. Rev. B. 45, 13244–13249 (1992) CrossRefGoogle Scholar
  18. Ramsahye, N.A., Maurin, G., Bourrelly, S., Llewellyn, P.L., Loiseau, T., Férey, G.: Charge distribution in metal organic framework materials: transferability to a preliminary molecular simulation study of the CO2 adsorption in the MIL-53 (Al) system. Phys. Chem. Chem. Phys. 9, 1059–1063 (2007a) CrossRefGoogle Scholar
  19. Ramsahye, N.A., Maurin, G., Bourrelly, S., Llewellyn, P.L., Loiseau, T., Serre, C., Férey, G.: Probing the adsorption sites for CO2 in metal organic frameworks materials MIL 53 (Al, Cr) and MIL 47 (V) by density functional theory. J. Phys. Chem. C (2007b, submitted) Google Scholar
  20. Ramsahye, N.A., Maurin, G., Bourrelly, S., Llewellyn, P.L., Loiseau, T., Serre, C., Férey, G.: On the breathing effect of a metal organic framework upon CO2 adsorption: Monte Carlo simulations compared to microcalorimetry experiments. Chem. Commun, DOI: 10.1039/B702986A (2007c, in press)
  21. Ramsahye, N.A., Festa, G., Bourrelly, S., Devic, Th., Duren, T., Llewellyn, P.L., Filinchuk, Y., Serre, C., Férey, G., Maurin, G.: An experimental and computer modelling study of CH4 and CO2 adsorption in metal organic framework MIL-47(V): a comparison of two computational strategies. J. Phys. Chem. C (2007d, submitted) Google Scholar
  22. Roswell, J.L.C., Yaghi, O.M.: Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J. Am. Chem. Soc. 128, 1304–1315 (2006) CrossRefGoogle Scholar
  23. Serre, C., Millange, F., Thouvenot, C., Noguès, M., Marsolier, G., Louër, D., Férey, G.: Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or Cr-III(OH)⋅{O2C–C6H4–CO2}⋅{HO2C–C6H4–CO2H}(x)⋅H2Oy. J. Am. Chem. Soc. 124, 13519–13526 (2002) CrossRefGoogle Scholar
  24. Serre, C., Bourrelly, S., Vimont, A., Ramsahye, N.A., Maurin, G., Llewellyn, P.L., Daturi, M., Leynaud, O., Barnes, G., Férey, P.: An explanation for the very large breathing effect of a metal-organic framework during CO2 adsorption. Adv. Mater. (2007). doi:10.1002/adma.200602645 Google Scholar
  25. Shen, J.W., Domanski, K.B., Osamu, K., Nakanishi, K.: Computer simulation on supercritical carbon dioxide fluid—a potential model for the benzene carbon dioxide system from ab initio calculations. Fluid Phase Equilib. 104, 375–390 (1995) CrossRefGoogle Scholar
  26. Sudik, A.C., Millward, A.R., Ockwig, N.W., Côté, A.P., Kim, J., Yaghi, O.M.: Design, synthesis, structure, and gas (N2, Ar, CO2, CH4, and H2) sorption properties of porous metal-organic tetrahedral and heterocuboidal polyhedra. J. Am. Chem. Soc. 127, 7110–7118 (2005) CrossRefGoogle Scholar
  27. Surble, S., Millange, F., Serre, C., Duren, T., Latroche, M., Bourrelly, S., Llewellyn, P.L., Férey, G.: Synthesis of MIL-102, a chromium carboxylate metal-organic framework, with gas sorption analysis. J. Am. Chem. Soc. 128, 14889–14896 (2006) CrossRefGoogle Scholar
  28. Yaghi, O.M., O’Keeffe, M., Ockwig, N.W., Chae, H.K., Eddaoudi, M., Kim, J.: Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003) CrossRefGoogle Scholar
  29. Yang, Q.Y., Zhong, C.L.: Understanding hydrogen adsorption in metal organic frameworks with open metal sites: A computational study. J. Phys. Chem. B 110, 655–658 (2006a) CrossRefGoogle Scholar
  30. Yang, Q.Y., Zhong, C.L.: Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal organic frameworks. J. Phys. Chem. B 110, 17776–17783 (2006b) CrossRefGoogle Scholar
  31. Zhao, X., Xiao, B., Fletcher, B.A.J., Thomas, K.M., Bradshaw, D., Rosseinsky, M.J.: Hysteretic adsorption and desorption of hydrogen by nanoporous metal-organic frameworks. Science 306, 1012–1015 (2004) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Naseem A. Ramsahye
    • 1
  • Guillaume Maurin
    • 1
  • Sandrine Bourrelly
    • 2
  • Philip L. Llewellyn
    • 2
  • Thomas Devic
    • 3
  • Christian Serre
    • 3
  • Thierry Loiseau
    • 3
  • Gerard Ferey
    • 3
  1. 1.Institut Charles Gerhardt Montpellier, UMR CNRS 5253, UM2, ENSCMUniversité Montpellier 2Montpellier cedex 05France
  2. 2.Laboratoire MADIREL UMR CNRS 6121Université de ProvenceMarseille cedex 20France
  3. 3.Institut Lavoisier, UMR CNRS 8637Université de Versailles Saint-Quentin-en-YvelinesVersailles cedexFrance

Personalised recommendations