Adsorption

, Volume 13, Issue 3–4, pp 257–265 | Cite as

Synthesis and adsorption investigations of zeolites MCM-22 and MCM-49 modified by alkali metal cations

Article

Abstract

Ion exchange was made on MCM-22 and MCM-49 zeolites with different Si/Al molar ratios, with Li+, Na+, K+, and Cs+ ions and the study of the influence of alkali metal cations on CO2 adsorption properties was performed. The degree of ion-exchange decreased for larger cations (Cs+) apparently due to steric hindrances. The exchange with different cations led to a decrease in the surface area and the micropore volume. Our study shows that the adsorption capacity of the tested zeolites depends significantly on the nature and the concentration of the charge-compensating cations. The highest CO2 adsorption capacity was obtained on the MWW zeolites with the lowest Si/Al molar ratio and the Li+ or K+ cations.

Keywords

MCM-22 zeolite MCM-49 zeolite Alkali metal cation exchange N2 and CO2 adsorption 

Abbreviations

SBET

BET surface area, m2/g

Sexternal

external surface area, m2/g

Vtotal

total pore volume, cm3/g

Vmicro

micropore volume, cm3/g

KH

Henry’s constant, cm3/g STP

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrett, P.A., Díaz-Cabañas, M.-J., Camblor, M.A.: Crystal structure of zeolite MCM-35 (MTF). Chem. Mater. 11, 2919–2927 (1999) CrossRefGoogle Scholar
  2. Čejka, J., Krejčí, A., Žilková, N., Kotrla, J., Ernst, S., Weber, A.: Activity and selectivity of zeolites MCM-22 and MCM-58 in the alkylation of toluene with propylene. Microporous Mesoporous Mater. 53, 121–133 (2002) CrossRefGoogle Scholar
  3. Čejka, J., Wichterlová, B.: Catal. Rev. 44, 375–421 (2002) CrossRefGoogle Scholar
  4. Corma, A., Corell, C., Pérez-Pariente, J.: Synthesis and characterization of the MCM-22 zeolite. Zeolites 15, 2–8 (1995) CrossRefGoogle Scholar
  5. Corma, A., Fornes, V., Galletero, M.S., Garcia, H., Gomez-Garcia, C.J.: Prevalence of the external surface over the internal pores in the spontaneous generation of tetrathiafulvalene radical cation incorporated in the novel delaminated ITQ-2 zeolite. Phys. Chem. Chem. Phys. 3, 1218–1222 (2001) CrossRefGoogle Scholar
  6. Corma, A., Martínez-Triguero, J.: The use of MCM-22 as a cracking zeolitic additive for FCC. J. Catal. 165, 102–120 (1997) CrossRefGoogle Scholar
  7. Delaval, Y., De Lara, E.C.: Study of physisorption of carbon dioxide on NaA zeolite. J. Chem. Soc., Faraday Trans. 1 77, 869–877 (1981) CrossRefGoogle Scholar
  8. Dorset, D.L.: Electron crystallography of zeolites. 3. Calcined MCM-22 and MCM-49, a case of subtle differences. Z. Kristallogr. 218, 612–616 (2003) CrossRefGoogle Scholar
  9. Dorset, D.L., Roth, W.J., Gilmore, C.J.: Electron crystallography of zeolites—the MWW family as a test of direct 3D structure determination. Acta Cryst. A61, 516–527 (2005) Google Scholar
  10. Kennedy, G.J., Lowton, S.L., Fung, A.S., Rubin, M.K., Steuernagel, S.: Multinuclear MAS NMR studies of zeolites MCM-22 and MCM-49. Catal. Today 49, 385–399 (1999) CrossRefGoogle Scholar
  11. Kučera, J., Nachtigall, P., Kotrla, J., Košová, G., Čejka, J.: Pyrrole as a probe molecule for characterization of basic sites in ZSM-5: a combined FTIR spectroscopy and computational study. J. Phys. Chem. B 108, 16012–16022 (2004) CrossRefGoogle Scholar
  12. Laforge, S., Ayrault, P., Martin, D., Guisnet, M.: Acidic and catalytic properties of MCM-22 and MCM-36 zeolites synthesized fro the same precursors. Appl. Catal. A 279, 79–88 (2005) CrossRefGoogle Scholar
  13. Lawton, S.L., Fung, A.S., Kennedy, G.J., Alemany, L.B., Chang, C.D., Hatzikos, G.H., Lissy, D.N., Rubin, M.K., Timken, H.-K.C., Sterernagel, S., Woessner, D.E.: Zeolite MCM-49: a three dimensional MCM-22 analogue synthesized by in situ crystallization. J. Phys. Chem. 100, 3788–3798 (1996) CrossRefGoogle Scholar
  14. Leonowicz, M.E., Lowton, J.A., Rubin, M.K.: MCM-22: A molecular sieve with two independent multidimensional channel systems. Science 264, 1910–1913 (1994) CrossRefGoogle Scholar
  15. Lowell, S., Shields, J.E., Thomas, M.A., Thommes, M.: Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, p. 44. Kluwer, Dordrecht (2004) Google Scholar
  16. Maurin, G., Llewellyn, P.L., Poyet, Th., Kuchta, B.: Adsorption of argon and nitrogen in X-faujasites: relationships for understanding the interactions with monovalent and divalent cations. Microporous Mesoporous Mater. 79, 53–59 (2005) CrossRefGoogle Scholar
  17. Nachtigall, P., Bulánek, R.: Theoretical investigation of site-specific characteristics of CO adsorption complexes in the Li+-FER zeolite. Appl. Catal. A 307, 118–127 (2006) CrossRefGoogle Scholar
  18. Plant, D.F., Maurin, G., Deroche, L., Gaberova, L., Llewellyn, P.L.: CO2 adsorption in alkali cation exchanged Y faujasites: a quantum chemical study compared to experiments. Chem. Phys. Lett. 426, 387–392 (2006) CrossRefGoogle Scholar
  19. Ravishankar, R., Sivasanker, S.: Hydroisomerization of n-hexane over Pt-H-MCM-22. Appl. Catal. A 142, 47–59 (1996) CrossRefGoogle Scholar
  20. Rodriguez, I., Climent, M.J., Iborra, S., Fornes, V., Corma, A.: Use of delaminated zeolites (ITQ-2) and mesoporous molecular sieves in the production of fine chemicals: preparation of dimethylacetals and tetrahydropyranylation of alcohols and phenols. J. Catal. 192, 440–447 (2000) CrossRefGoogle Scholar
  21. Roth, W.J.: MCM-22 zeolite family and the delaminated zeolite MCM-56 obtained in one-step synthesis. Stud. Surf. Sci. Catal. 158, 19–26 (2005) CrossRefGoogle Scholar
  22. Rubin, M.K., Chu, P.: U.S. patent 4,954,325 (1990) Google Scholar
  23. Santos Marques, A.L., Fontes Monteiro, J.L., Pastore, H.O.: Static crystallization of zeolites MCM-22 and MCM-49. Microporous Mesoporous Mater. 32, 131–145 (1999) CrossRefGoogle Scholar
  24. Shiralkar, V.P., Kulkarni, S.B.: Sorption of carbon dioxide in cation exchanged Y type zeolites: sorption isotherms and state of sorbed molecule. Zeolites 4, 329–336 (1984) CrossRefGoogle Scholar
  25. Siriwardane, R.V., Shen, M.-S., Fisher, E.P., Poston, J.A.: Adsorption of CO2 on molecular sieves and activated carbon. Energy Fuels 15, 279–284 (2001) CrossRefGoogle Scholar
  26. Tanabe, K., Hölderich, W.F.: Industrial application of solid acid-base catalysts. Appl. Catal. A 181, 399–434 (1999) CrossRefGoogle Scholar
  27. Walton, K.S., Abney, M.B., LeVan, M.D.: CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange. Microporous Mesoporous Mater. 91, 78–84 (2006) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.J. Heyrovský Institute of Physical Chemistry of ASCR v.v.i.Prague 8Czech Republic

Personalised recommendations