Advertisement

Adsorption

, Volume 13, Issue 1, pp 1–7 | Cite as

High pressure sorption isotherms via differential pressure measurements

  • John M. Zielinski
  • Charles G. Coe
  • Randy J. Nickel
  • Anthony M. Romeo
  • Alan C. Cooper
  • Guido P. Pez
Article

Abstract

A differential pressure adsorption unit (DPAU) has been constructed which is capable of accurately measuring isotherm data up to 2000 psia with as little as 100 mg of sample. This non-traditional adsorption/desorption method has been benchmarked by comparing hydrogen and methane isotherms measured with standard volumetric and gravimetric instruments on a NaA (4A) zeolite and an activated carbon at near ambient temperatures. The results from stability tests and well as the details of the mathematical analysis for this differential pressure method are also provided.

Keywords

Adsorption Differential pressure Isotherm Isotherm measurement Hydrogen storage Volumetric method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arp, V.D., McCarty, R.D.: Thermophysical properties of helium-4 from 0.8 to 1500 K with pressures to 2000 Mpa. NIST Technical Note 1334, US Department of Commerce, November 1989 Google Scholar
  2. Browning, D.J., Gerrard, M.L., Lakeman, J.B., Mellor, I.M., Mortimer, R.J., Turpin, M.C.: Studies into the storage of hydrogen in carbon nanofibers: proposal of a possible reaction mechanism. Nano Lett. 2(3), 201–205 (2002) CrossRefGoogle Scholar
  3. Dreisbach, F.: Measurement of H2 adsorption on activated carbon. Rubotherm Präzisionsmeßtechnik GmbH, Bochum, Germany, private correspondence (2004) Google Scholar
  4. Haas, M.K., Zielinski, J.M., Coe, C.G., Cooper, A.C., Pez, G.P.: Tailoring single-walled carbon nanotubes for hydrogen storage. J. Mater. Res. 20(12), 3214–3223 (2005) CrossRefGoogle Scholar
  5. Kayiran, S., Darkrim, F., Gicquel, A.: Hydrogen adsorption in lithium exchanged NaA zeolites. In: Zeolites and Mesoporous Materials at the Dawn of the 21st Century. Studies in Surface Science and Catalysis, vol. 135, pp. 2878–2884 (2001) Google Scholar
  6. Malbrunot, P., Vidal, D., Vermesse, J., Chahine, R., Bose, T.K.: Adsorbent helium density measurement and its effect on adsorption isotherms at high pressure. Langmuir 13, 539–544 (1997) CrossRefGoogle Scholar
  7. McCarty, R.D., Hord, J., Roder, H.M.: Selected properties of hydrogen (engineering design data). NBS Monograph 168, US Department of Commerce, February 1981 Google Scholar
  8. Sieverts, A.: Zur Kenntnis der Okklusion und Diffusion von Gasen durch Metalle. Z. Phys. Chem. 60 129 (1907) Google Scholar
  9. Sircar, S.: Gibbsian surface excess for gas adsorption—revisited. Ind. Eng. Chem. Res. 38, 3670–3682 (1999) CrossRefGoogle Scholar
  10. Sircar, S.: Measurement of gibbsian surface excess. AIChE J. 47(5), 1169–1176 (2001) CrossRefGoogle Scholar
  11. Tibbetts, G.G., Meisner, G.P., Olk, C.H.: Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers. Carbon 39, 2291–2301 (2001) CrossRefGoogle Scholar
  12. Younglove, B.A., Ely, J.F.: Thermophysical properties of fluids, II: methane, ethane, propane, isobutane, and normal butane. J. Phys. Chem. Ref. Data 15, 577 (1987) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • John M. Zielinski
    • 1
  • Charles G. Coe
    • 1
  • Randy J. Nickel
    • 1
  • Anthony M. Romeo
    • 1
  • Alan C. Cooper
    • 1
  • Guido P. Pez
    • 1
  1. 1.Air Products and Chemicals, Inc.AllentownUSA

Personalised recommendations