On finite volume discretization of infiltration dynamics in tumor growth models

  • Xianyi ZengEmail author
  • Mashriq Ahmed Saleh
  • Jianjun Paul Tian


We address numerical challenges in solving hyperbolic free boundary problems described by spherically symmetric conservation laws that arise in the modeling of tumor growth due to immune cell infiltrations. In this work, we normalize the radial coordinate to transform the free boundary problem to a fixed boundary one, and utilize finite volume methods to discretize the resulting equations. We show that the conventional finite volume methods fail to preserve constant solutions and the incompressibility condition, and they typically lead to inaccurate, if not wrong, solutions even for very simple tests. These issues are addressed in a new finite volume framework with segregated flux computations that satisfy sufficient conditions for ensuring the so-called totality conservation law and the geometric conservation law. We focus on describing the new framework by enhancing the conventional first-order upwind scheme, and the methodology extends to second-order ones. The numerical performance is assessed by various benchmark tests to show that the enhanced method is able to preserve the incompressibility constraint and produce much more accurate solutions than the conventional one.


Finite volume methods Cell incompressibility Free boundary problems Patlak-Keller-Segel system Tumor growth modeling 

Mathematics Subject Classification (2010)

65M08 35R35 35Q92 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



X. Zeng would like to thank University of Texas at El Paso for the start up support.

Funding information

J. P. Tian would like to thank the National Science Foundation of US for the support in mathematical modeling under the grant no. DMS-1446139 and the National Institutes of Health of US for the support in cancer research under the grant no. U54CA132383.


  1. 1.
    Ascher, U.M., Petzold, L.R.: Computer methods for ordinary differential equations and differential-algebraic equations. Society for Industrial and Applied Mathematics (1998)Google Scholar
  2. 2.
    Burger, M., Francesco, M.D., Dolak-Struss, Y.: The Keller–Segel model for chemotaxis with prevention of overcrowding: linear vs. nonlinear diffusion. SIAM J. Math. Anal. 38(4), 1288–1315 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Calvez, V., Carrillo, J.: Volume effects in the Keller-Segel model: energy estimates preventing blow-up. J. Math. Pure. Appl. 86(2), 155–175 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Casciari, J.J., Sotirchos, S.V., Sutherland, R.M.: Mathematical modelling of microenvironment and growth in EMT6/Ro multicellular tumour spheroids. Cell Proliferat. 25(1), 1–22 (1992)CrossRefGoogle Scholar
  5. 5.
    Chen, X., Friedman, A.: A free boundary problem for an elliptic-hyperbolic system: an application to tumor growth. SIAM J. Math. Anal. 35(4), 974–986 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Chertock, A., Epshteyn, Y., Hu, H., Kurganov, A.: High-order positivity-preserving hybrid finite-volume-finite-difference methods for chemotaxis systems. Adv. Comput. Math. 44(1), 327–350 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Colella, P., Woodward, P.R.: The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys. 54(1), 174–201 (1984)zbMATHCrossRefGoogle Scholar
  8. 8.
    Cui, S., Friedman, A.: A hyperbolic free boundary problem modeling tumor growth. Interface Free Bound. 5(2), 159–182 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Espejo, E., Vilches, K., Conca, C.: Sharp condition for blow-up and global existence in a two species chemotactic Keller-Segel system in \(\mathbb {R}^{2}\). Eur. J. Appl. Math. 24(2), 297–313 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Farhat, C., Geuzaine, P., Grandmont, C.: The discrete geometric conservation law and the nonlinear stability of ale schemes for the solution of flow problems on moving grids. J. Comput. Phys. 174(2), 669–694 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Filbet, F.: A finite volume scheme for the Patlak-Keller-Segel chemotaxis model. Numer. Math. 104(4), 457–488 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Friedman, A., Hao, W., Hu, B.: A free boundary problem for steady small plaques in the artery and their stability. J. Differ. Equations 259(4), 1227–1255 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Friedman, A., Hu, B., Xue, C.: Analysis of a mathematical model of ischemic cutaneous wounds. SIAM J. Math. Anal. 42(5), 2013–2040 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Hao, W., Friedman, A.: The LDL–HDL profile determines the risk of atherosclerosis: a mathematical model. PLoS ONE 9(3), e90,497 (2014)CrossRefGoogle Scholar
  15. 15.
    Hao, W., Schlesinger, L.S., Friedman, A.: Modeling granulomas in response to infection in the lung. PLoS ONE 11(3), e014,738 (2016)Google Scholar
  16. 16.
    Keller, E.F., Segel, L.A.: Model for chemotaxis. J. Theor. Biol. 30(2), 225–234 (1971)zbMATHCrossRefGoogle Scholar
  17. 17.
    Kim, I., Yao, Y.: The Patlak-Keller-Segel model and its variations: properties of solutions via maximum principle. SIAM J. Math. Anal. 44(2), 568–602 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    van Leer, B.: Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979)zbMATHCrossRefGoogle Scholar
  19. 19.
    LeVeque, R.: Finite volume methods for hyperbolic problems. Cambridge Texts in Applied Mathematics. Cambridge University Press (2002)Google Scholar
  20. 20.
    Niu, B., Zeng, X., Szulzewsky, F., Holte, S., Maini, P.K., Holland, E.C., Tian, J.P.: Mathematical modeling of PDGF-driven glioma reveals the infiltrating dynamics of immune cells into tumors. Submitted (2018)Google Scholar
  21. 21.
    Ortega, A.L., Scovazzi, G.: A geometrically-conservative, synchronized, flux-corrected remap for arbitrary Lagrangian-Eulerian computations with nodal finite elements. J. Comput. Phys. 230(17), 6709–6741 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Perthame, B., Dalibard, A.L.: Existence of solutions of the hyperbolic Keller-Segel model. T. Am. Math. Soc. 361(5), 2319–2335 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Zeng, X.: A general approach to enhance slope limiters in MUSCL schemes on nonuniform rectilinear grids. SIAM J. Sci. Comput. 38(2), A789–A813 (2016)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematical Sciences, Computational Science ProgramUniversity of Texas at El PasoEl PasoUSA
  2. 2.Computational Science ProgramUniversity of Texas at El PasoEl PasoUSA
  3. 3.Department of Mathematical SciencesNew Mexico State UniversityLas CrucesUSA

Personalised recommendations