Hyper-reduced order models for parametrized unsteady Navier-Stokes equations on domains with variable shape
- 5 Downloads
Abstract
In this work, we set up a new, general, and computationally efficient way to tackle parametrized fluid flows modeled through unsteady Navier-Stokes equations defined on domains with variable shape, when relying on the reduced basis method. We easily describe a domain by flexible boundary parametrizations, and generate domain (and mesh) deformations by means of a solid extension, obtained by solving a harmonic extension or a linear elasticity problem. The proposed procedure is built over a two-stage reduction: (i) first, we construct a reduced basis approximation for the mesh motion problem, irrespective of the fluid flow problem we focus on; (ii) then, we generate a reduced basis approximation of the unsteady Navier-Stokes problem, relying on finite element snapshots evaluated over a set of reduced deformed configuration, and approximating both velocity and pressure fields simultaneously. To deal with unavoidable nonaffine parametric dependencies arising in both the mesh motion and the state problem, we apply a matrix version of the discrete empirical interpolation method, allowing treating a wide range of geometrical deformations in an efficient and purely algebraic way. The same strategy is used to perform hyper-reduction of nonlinear terms. To assess the numerical performances of the proposed technique, we address the solution of parametrized fluid flows where the parameters describe both the shape of the domain and relevant physical features. Complex flow patterns such as the ones appearing in a patient-specific carotid bifurcation are accurately approximated, as well as derived quantities of potential clinical interest.
Keywords
Reduced basis method Parametrized PDEs Hyper-reduction techniques Navier-Stokes equations Computational fluid dynamics Varying domainsMathematics Subject Classification (2010)
65M60 65N12 76M10Preview
Unable to display preview. Download preview PDF.
Notes
Acknowledgments
We acknowledge the Swiss National Supercomputing Centre (CSCS) for providing us the CPU resources under project ID s796.
Funding information
The research of N. Dal Santo has been supported by the Swiss State Secretariat for Education, Research and Innovation (SERI), project No. C14.0068, in the framework of the COST action number TD1307.
References
- 1.Baiges, J., Codina, R., Idelsohn, S.: Explicit reduced-order models for the stabilized finite element approximation of the incompressible Navier-Stokes equations. Int. J. Numer. Meth Fluids 72(12), 1219–1243 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 2.Baker, T.J.: Mesh movement and metamorphosis. Eng. Comput. 18(3), 188–198 (2002)CrossRefGoogle Scholar
- 3.Ballarin, F., Faggiano, E., Ippolito, S., Manzoni, A., Quarteroni, A., Rozza, G., Scrofani, R.: Fast simulations of patient-specific haemodynamics of coronary artery bypass grafts based on a POD-Galerkin method and a vascular shape parametrization. J. Comput. Phys. 315, 609–628 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 4.Ballarin, F., Faggiano, E., Manzoni, A., Quarteroni, A., Rozza, G., Ippolito, S., Antona, C., Scrofani, R.: Numerical modeling of hemodynamics scenarios of patient-specific coronary artery bypass grafts Biomech. Model Mechan. 16(4), 1373–1399 (2017)zbMATHCrossRefGoogle Scholar
- 5.Ballarin, F., Manzoni, A., Quarteroni, A., Rozza, G.: Supremizer stabilization of P,OD–Galerkin approximation of parametrized steady incompressible Navier–Stokes equations. Int. J. Numer Methods Engng. 102(5), 1136–1161 (2015)zbMATHCrossRefGoogle Scholar
- 6.Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
- 7.Bergmann, M., Bruneau, C.-H., Iollo, A.: Enablers for robust POD models. J. Comput. Phys. 228(2), 516–538 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 8.Bonomi, D., Manzoni, A., Quarteroni, A.: A matrix DEIM technique for model reduction of nonlinear parametrized problems in cardiac mechanics. Comput. Methods Appl. Mech. Engrg. 324, 300–326 (2017)MathSciNetCrossRefGoogle Scholar
- 9.Caiazzo, A., Iliescu, T., John, V., Schyschlowa, S.: A numerical investigation of velocity–pressure reduced order models for incompressible flows. J Comput. Phys. 259, 598–616 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 10.Campbell, I.C., Ries, J., Dhawan, S.S., Quyyumi, A.A., Taylor, W.R., Oshinski, J.N.: Effect of inlet velocity profiles on patient-specific computational fluid dynamics simulations of the carotid bifurcation. J. Biomech. Engng. 134(5), 051001 (2012)CrossRefGoogle Scholar
- 11.Carlberg, K., Farhat, C., Cortial, J., Amsallem, D.: The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows. J. Comput. Phys. 242, 623–647 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 12.Carlberg, K., Tuminaro, R., Boggs, P.: Preserving Lagrangian structure in nonlinear model reduction with application to structural dynamics. SIAM J. Sci. Comput. 37(2), B153–B184 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 13.Chaturantabut, S.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32(5), 2737–2764 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 14.Colciago, C.M., Deparis, S., Quarteroni, A.: Comparisons between reduced order models and full 3d models for fluid–structure interaction problems in haemodynamics. J. Comput. Appl. Math. 265, 120–138 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 15.Dal Santo, N., Deparis, S., Manzoni, A., Quarteroni, A.: An algebraic least squares reduced basis method for the solution of parametrized Stokes equations. Technical Report 21.2017 MATHICSE–EPFL (2017)Google Scholar
- 16.De Sturler, E., Liesen, J.: Block-diagonal and constraint preconditioners for nonsymmetric indefinite linear systems. part i: Theory. SIAM J. Sci. Comput. 26(5), 1598–1619 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
- 17.Deparis, S.: Reduced basis error bound computation of parameter-dependent Navier–Stokes equations by the natural norm approach. SIAM J. Numer. Anal. 46 (4), 2039–2067 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
- 18.Drohmann, M., Haasdonk, B., Ohlberger, M.: Reduced basis approximation for nonlinear parametrized evolution equations based on empirical operator interpolation. SIAM J. Sci. Comput. 34(2), A937–A969 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 19.Drohmann, M., Haasdonk, B., Ohlberger, M.: Reduced basis approximation for nonlinear parametrized evolution equations based on empirical operator interpolation. SIAM J. Sci. Comput. 34(2), A937–A969 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 20.Díez, P., Zlotnik, S., Huerta, A.: Generalized parametric solutions in Stokes flow. Comput. Methods Appl. Mech. Engrg. 326, 223–240 (2017)MathSciNetCrossRefGoogle Scholar
- 21.Elman, H., Howle, V.E., Shadid, J., Shuttleworth, R., Tuminaro, R.: Block preconditioners based on approximate commutators. SIAM J. Sci Comput. 27 (5), 1651–1668 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 22.Elman, H.C., Forstall, V.: Numerical solution of the parameterized steady-state Navier-Stokes equations using empirical interpolation methods. Comput. Methods Appl. Mech. Engrg. 317, 380–399 (2017)MathSciNetCrossRefGoogle Scholar
- 23.Elman, H.C., Silvester, D.: Fast nonsymmetric iterations and preconditioning for Navier–Stokes equations. SIAM J. Sci. Comput. 17(1), 33–46 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
- 24.Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics (2005)Google Scholar
- 25.Forti, D., Dedè, L.: Semi-implicit bdf time discretization of the Navier–Stokes equations with vms-les modeling in a high performance computing framework. Comput. Fluids 117, 168–182 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 26.Gervasio, P., Saleri, F., Veneziani, A.: Algebraic fractional-step schemes with spectral methods for the incompressible navier–stokes equations. J. Comput. Phys. 214(1), 347–365 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 27.Ghia, U., Ghia, K.N., Shin, C.: High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J. Comput. Phys. 48(3), 387–411 (1982)zbMATHCrossRefGoogle Scholar
- 28.Guerciotti, B., Vergara, C., Azzimonti, L., Forzenigo, L., Buora, A., Biondetti, P., Domanin, M.: Computational study of the fluid-dynamics in carotids before and after endarterectomy. J. Biomech. 49(1), 26–38 (2016)CrossRefGoogle Scholar
- 29.Gunzburger, M.D., Peterson, J.S., Shadid, J.N.: Reducer-order modeling of time-dependent PDEs, with multiple parameters in the boundary data. Comput. Methods Appl. Mech. Engrg. 196, 1030–1047 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
- 30.Helenbrook, B.: Mesh deformation using the biharmonic operator. Int. J. Numer. Methods Engrg. 56(7), 1007–1021 (2003)zbMATHCrossRefGoogle Scholar
- 31.Ito, K., Ravindran, S.: A reduced-order method for simulation and control of fluid flows. J. Comput. Phys. 143(2), 403–425 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
- 32.Kay, D., Loghin, D., Wathen, A.: A preconditioner for the steady-state Navier–Stokes equations. SIAM J. Sci Comput. 24(1), 237–256 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
- 33.Knezevic, D.J., Nguyen, N.-C., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for the parametrized unsteady Boussinesq equations. Math. Mod. Meth. Appl. Sci. 21(07), 1415–1442 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 34.Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal. 40(2), 492–515 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
- 35.Lancellotti, R.M., Vergara, C., Valdettaro, L., Bose, S., Quarteroni, A.: Large eddy simulations for blood dynamics in realistic stenotic carotids. Int. J. Numer. Methods Biomed. Engng. 33(11), e2868 (2017)MathSciNetCrossRefGoogle Scholar
- 36.Maday, Y., Nguyen, N.C., Patera, A.T., Pau, S.H.: A general, multipurpose interpolation procedure: the magic points. Commun. Pur. Appl. Anal. 8(1), 383–404 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 37.Manzoni, A.: An efficient computational framework for reduced basis approximation and a posteriori error estimation of parametrized Navier-Stokes flows. ESAIM Math. Modell. Numer. Anal. 48(4), 1199–1226 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 38.Manzoni, A., Negri, F.: Efficient reduction of PDEs defined on domains with variable shape. In: Benner, P., Ohlberger, M., Patera, A., Rozza, G., Urban, K. (eds.) Model Reduction of Parametrized Systems, vol. 17, pp 183–199. Springer, Cham (2017)zbMATHCrossRefGoogle Scholar
- 39.Manzoni, A., Quarteroni, A., Rozza, G.: Model reduction techniques for fast blood flow simulation in parametrized geometries. Int. J. Numer Methods Biomed. Engng. 28(6-7), 604–625 (2012)MathSciNetCrossRefGoogle Scholar
- 40.Manzoni, A., Quarteroni, A., Rozza, G.: Shape optimization for viscous flows by reduced basis methods and free-form deformation. Int. J. Numer. Methods Fluids 70(5), 646–670 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 41.May, D.A., Moresi, L.: Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics. Phys. Earth Planet. In. 171(1), 33–47 (2008)CrossRefGoogle Scholar
- 42.Negri, F.: Efficient reduction techniques for the simulation and optimization of parametrized systems. Phd thesis EPFL (2015)Google Scholar
- 43.Negri, F., Manzoni, A., Amsallem, D.: Efficient model reduction of parametrized systems by matrix discrete empirical interpolation. J. Comput. Phys. 303, 431–454 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 44.Negri, F., Manzoni, A., Rozza, G.: Reduced basis approximation of parametrized optimal flow control problems for the S,tokes equations. Comput. Math. Appl. 69, 319–336 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 45.Pagani, S., Manzoni, A., Quarteroni, A.: Numerical approximation of parametrized problems in cardiac electrophysiology by a local reduced basis method. Comput. Meth. Appl. Mech. Engrg. 340, 530–558 (2018)MathSciNetCrossRefGoogle Scholar
- 46.Quarteroni, A., Manzoni, A., Negri, F.: Reduced basis methods for partial differential equations: an introduction. Springer, Berlin (2016)zbMATHCrossRefGoogle Scholar
- 47.Quarteroni, A., Rozza, G.: Numerical solution of parametrized Navier–Stokes equations by reduced basis methods. Numer. Meth. Part. D.E. 23(4), 923–948 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
- 48.Rozza, G., Huynh, D., Manzoni, A.: Reduced basis approximation and error bounds for Stokes flows in parametrized geometries: roles of the inf–sup stability constants. Numer. Math. 125(1), 115–152 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 49.Saad, Y.: A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput. 14(2), 461–469 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
- 50.Segal, A., ur Rehman, M., Vuik, K.: Preconditioners for incompressible Navier-Stokes solvers. Numer. Math. Theory Methods Appl. 3(3), 245–275 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 51.Semaan, R., Kumar, P., Burnazzi, M., Tissot, G., Cordier, L., Noack, B.: Reduced-order modelling of the flow around a high-lift configuration with unsteady coanda blowing. J Fluid Mech. 800, 72–110 (2016)MathSciNetCrossRefGoogle Scholar
- 52.Sieger, D., Botsch, M., Menzel, S.: On shape deformation techniques for simulation-based design optimization. In: Perotto, S., Formaggia, L. (eds.) New Challenges in Grid Generation and Adaptivity for Scientific Computing, volume 5 of SEMA SIMAI Springer Series, pp 281–303. Springer International Publishing, Switzerland (2015)zbMATHCrossRefGoogle Scholar
- 53.Silvester, D., Elman, H.C., Kay, D., Wathen, A.: Efficient preconditioning of the linearized Navier–Stokes equations for incompressible flow. J. Comput. Appl Math. 128(1), 261–279 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
- 54.Slager, C., Wentzel, J., Gijsen, F., Thury, A., Van der Wal, A., Schaar, J., Serruys, P.: The role of shear stress in the destabilization of vulnerable plaques and related therapeutic implications. Nature Reviews Cardiology 2(9), 456 (2005)Google Scholar
- 55.Staten, M.L., Owen, S.J., Shontz, S.M., Salinger, A.G., Coffey, T.S.: A comparison of mesh morphing methods for 3d shape optimization. In: Proceedings of the 20th international meshing roundtable, pp. 293–311. Springer (2011)Google Scholar
- 56.Stein, K., Tezduyar, T., Benney, R.: Mesh moving techniques for fluid-structure interactions with large displacements. J. Appl. Mech. 70(1), 58–63 (2003)zbMATHCrossRefGoogle Scholar
- 57.Stein, K., Tezduyar, T.E., Benney, R.: Automatic mesh update with the solid-extension mesh moving technique. Comput. Methods Appl. Mech. Engrg. 193 (21–22), 2019–2032 (2004)zbMATHCrossRefGoogle Scholar
- 58.Tezduyar, T., Behr, M., Mittal, S., Johnson, A.: Computation of unsteady incompressible flows with the stabilized finite element methods: space-time formulations, iterative strategies and massively parallel implementations. In: New Methods in Transient Analysis, volume 246/AMD, pp. 7–24. ASME, New York (1992)Google Scholar
- 59.Turek, S.: Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Computational Approache, vol. 6. Springer Science & Business Media (1999)Google Scholar
- 60.Veroy, K., Patera, A.: Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds. Int. J. Numer. Method Fluids 47(8–9), 773–788 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
- 61.Vuik, K., Saghir, A., Boerstoel, G.: The Krylov accelerated SIMPLE (R) method for flow problems in industrial furnaces. Int. J. Numer. Methods Fluids 33 (7), 1027–1040 (2000)zbMATHCrossRefGoogle Scholar
- 62.Washabaugh, K., Zahr, M., Farhat, C.: On the use of discrete nonlinear reduced-order models for the prediction of steady-state flows past parametrically deformed complex geometries. In: 54th AIAA Aerospace Sciences Meeting, pp. 1814 (2016)Google Scholar
- 63.Wathen, A., Silvester, D.: Fast iterative solution of stabilised stokes systems. part i Using simple diagonal preconditioners. SIAM J. Numer. Anal. 30(3), 630–649 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
- 64.Weller, J., Lombardi, E., Bergmann, M., Iollo, A.: Numerical methods for low-order modeling of fluid flows based on POD. Int. J. Numer. Methods Fluids 63(2), 249–268 (2010)MathSciNetzbMATHGoogle Scholar
- 65.Wirtz, D., Sorensen, D., Haasdonk, B.: A posteriori error estimation for DEIM reduced nonlinear dynamical systems. SIAM J. Sci. Comput. 36(2), A311–A338 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 66.Wittum, G.: Multi-grid methods for Stokes and Navier-Stokes equations. Numer. Math. 54(5), 543–563 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
- 67.Wootton, D.M., Ku, D.N.: Fluid mechanics of vascular systems, diseases, and thrombosis. Ann. Rev. Biomed. Eng. 1(1), 299–329 (1999)CrossRefGoogle Scholar
- 68.Yano, M.: A space-time petrov–galerkin certified reduced basis method: application to the Boussinesq equations. SIAM J. Sci. Comput. 36(1), A232–A266 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 69.Zimmermann, R., Vendl, A., Görtz, S.: Reduced-order modeling of steady flows subject to aerodynamic constraints. AIAA J. 52(2), 255–266 (2014)CrossRefGoogle Scholar