Advertisement

A probabilistic extension to Conway’s Game of Life

  • Gabriel Aguilera-Venegas
  • José Luis Galán-GarcíaEmail author
  • Rocío Egea-Guerrero
  • María Á. Galán-García
  • Pedro Rodríguez-Cielos
  • Yolanda Padilla-Domínguez
  • María Galán-Luque
Article
  • 12 Downloads

Abstract

The “Game of life” model was created in 1970 by the mathematician John Horton Conway using cellular automata. Since then, different extensions of these cellular automata have been used in many applications. In this work, we introduce probabilistic cellular automata which include non-deterministic rules for transitions between successive generations of the automaton together with probabilistic decisions about life and death of the cells in the next generation of the automaton. Different directions of the neighbours of each cell are treated with the possibility of applying distinct probabilities. This way, more realistic situations can be modelled and the obtained results are also non-deterministic. In this paper, we include a brief state of the art, the description of the model and some examples obtained with an implementation of the model made in Java.

Keywords

Probabilistic cellular automata Game of Life 

Mathematics Subject Classification (2010)

68Q80 37B15 68Q87 68W20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank the anonymous reviewers for their suggestions and comments which have improved the quality of the paper.

References

  1. 1.
    Agapie, A., Andreica, A., Giuclea, M.: Probabilistic cellular automata. J. Comput. Biol. 21(9), 699–708 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Agapie, A.: Simple form of the stationary distribution for 3D cellular automata in a special case. Physica A. 389, 2495–2499 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Aguilera–Venegas, G., Egea-Guerrero, R., Galán–García, J.L.: Introducing probabilistic cellular automata. A versatile extension of Game of Life (Abstract). In: Solin, P., Karban, P., Ruis, J (eds.) ESCO 2018. 6th European Seminar on Computing (Book of Abstracts). University of West Bohemia, Pilsen, Czech Republic, p 75 (2018)Google Scholar
  4. 4.
    Aguilera-Venegas, G., Galán-García, J.L., Mérida-Casermeiro, E., Rodríguez-Cielos, P.: An accelerated-time simulation of baggage traffic in an airport terminal. J. Math. Comput. Simul. 104, 58–66 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bak, P., Chen, K., Creutz, M.: Self-organized criticality in the Game of Life. Nature 342, 780–782 (1989)CrossRefGoogle Scholar
  6. 6.
    Bays, C.: Candidates for the Game of Life in three dimensions. Complex Systems 1, 373–400 (1987)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bays, C.: Cellular automata in the triangular tessellation. Complex Systems 8, 127–150 (1994)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bays, C.: A note on the Game of Life in hexagonal and pentagonal tessellations. Complex Systems 15, 245–252 (2005)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Bays, C.: Introduction to cellular automata and Conway’s Game of Life. In: Adamatzky, A. (ed.) Game of Life Cellular Automata, pp. 1–7. Springer, London (2010)Google Scholar
  10. 10.
    Bleh, D., Calarco, T., Montangero, S.: Quantum Game of Life, EPL. Europhys. Lett. 97(2), 20012p1–20012-p5 (2012)CrossRefGoogle Scholar
  11. 11.
    Dünweg, B., Schiller, U.D., Ladd, A.J.C.: Statistical mechanics of the fluctuating lattice Boltzmann equation. Phys. Rev. E 76(3), 036704 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fukś, H.: Nondeterministic density classification with diffusive probabilistic cellular automata. Phys. Rev. E 66(6), 066106 (2002)CrossRefGoogle Scholar
  13. 13.
    Galán-García, J.L., Aguilera-Venegas, G., Rodríguez-Cielos, P.: An accelerated-time simulation for traffic flow in a smart city. J. Comput. Appl. Math. 270, 557–563 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gardner, M.: The fantastic combinations of John Conway’s new solitaire game life. Sci. Am. 223, 120–123 (1970)CrossRefGoogle Scholar
  15. 15.
    Ladd, A.J.C.: Short-time motion of colloidal particles: numerical simulation via a fluctuating lattice-Boltzmann equation. Phys. Rev. Lett. 70(9), 1339–1342 (1993)CrossRefGoogle Scholar
  16. 16.
    Reiter, C.A.: Fuzzy automata and life. Complexity 7(3), 19–29 (2002)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Rendell, P.: A simple universal Turing machine for the Game of Life Turing machine. In: Adamatzky, A. (ed.) Game of Life Cellular Automata, pp. 519–545. Springer, London (2010)Google Scholar
  18. 18.
    Schulman, L.S., Seiden, P.E.: Statistical mechanics of a dynamical system based on Conway’s game of Life. J. Stat. Phys. 19(3), 293–314 (1978)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Gabriel Aguilera-Venegas
    • 1
  • José Luis Galán-García
    • 1
    Email author
  • Rocío Egea-Guerrero
    • 1
  • María Á. Galán-García
    • 1
  • Pedro Rodríguez-Cielos
    • 1
  • Yolanda Padilla-Domínguez
    • 1
  • María Galán-Luque
    • 2
  1. 1.Department of Applied MathematicsUniversity of Málaga, E.T.S.I. InformáticaMálagaSpain
  2. 2.Department of Applied MathematicsUniversity of Málaga, Facultad de Ciencias de la SaludMálagaSpain

Personalised recommendations