Advertisement

A cardioid-parametric model for the Magnus effect in baseballs

  • Mario A. Aguirre-López
  • O. Díaz-Hernández
  • Filiberto Hueyotl-Zahuantitla
  • Javier Morales-CastilloEmail author
  • F.-Javier Almaguer
  • Gerardo J. Escalera Santos
Article
  • 27 Downloads

Abstract

The Magnus effect is responsible for deflecting the trajectory of a spinning baseball. The deflection at the end of the trajectory can be estimated by simulating some similar trajectories or by clustering real paths; however, previous to this study, there are no reports for a detailed connection between the initial throw conditions and the resulting deflection by using. The only approximation about this is the PITCHf/x algorithm, which uses the kinematics equations. In this work, deflections from simulated spinning throws with random linear and angular velocities and spin axis parallel to the horizontal plane are analyzed in their polar representation. A cardioid function is proposed to express the vertical deflection as response of the angular velocity. This is based on both theoretical arguments from the ball movement equations and from the numerical solution of such equations. We found that the vertical deflection fits a cardioid model as function of the Magnus coefficient and the spin angle, for a set of trajectories with initial linear velocities symmetrically distributed around the direction of motion. A variation of the model can be applied to estimate the radial deflection whereas an extended model should be explored for trajectories with velocities asymmetrically distributed. The model is suitable for many applications: from video games to pitching machines. In addition, the model approaches to the results obatined with the kinematic equations, which serves as validation of the PITCHf/x algorithm.

Keywords

Magnus effect Baseball Aerodynamic forces Cardioid model Directional data 

Mathematics Subject Classification (2010)

62F10 62P35 65L05 68U20 70K65 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Authors thank Pablo Padilla-Longoria and Rosa Isela Hernández-Zamora for their feedback and suggestions for this investigation. FHZ expresses his gratitude for the support from Consejo Nacional de Ciencia y Tecnología (CONACyT-México), Cátedra 873.

References

  1. 1.
    Adair, R.K.: The Physics of Baseball. Harper Collins, New York (2002)Google Scholar
  2. 2.
    Robinson, G., Robinson, I.: The motion of an arbitrarily rotating spherical projectile and its application to ball games. Phys. Scr. 88, 018101 (2014)CrossRefGoogle Scholar
  3. 3.
    Cross, R.: Physics of Baseball & Softball. Springer, Berlin (2011)CrossRefGoogle Scholar
  4. 4.
    Briggs, L.J.: Effect of spin and speed on the lateral deflection (curve) of a baseball; and the Magnus effect for smooth spheres. Am. J. Phys. 27, 589–596 (1959)CrossRefzbMATHGoogle Scholar
  5. 5.
    Nathan, A.M.: The effect of spin on the flight of a baseball. Am. J. Phys. 76, 119–124 (2008)CrossRefGoogle Scholar
  6. 6.
    Nathan, A.M., Hopkins, J., Chong, L., Kaczmarski, H.: The effect of spin on the flight of a baseball. In: Moritz, E.F., Haake, S. (eds.) The Engineering of Sport 6, pp 23–28. Springer, Berlin (2006)Google Scholar
  7. 7.
    Kray, T., Franke, J., Frank, W.: Magnus effect on a rotating soccer ball at high Reynolds numbers. J. Wind Eng. Ind. Aerodyn. 124, 46–53 (2014)CrossRefGoogle Scholar
  8. 8.
    Alaways, L.W.: Aerodynamics of the curve-ball: an investigation of the effects of angular velocity on baseball trajectories, PhD Thesis, University of California (1998)Google Scholar
  9. 9.
    Adair, R.K.: The physics of baseball. Phys. Today 48, 26–31 (1995).  https://doi.org/10.1063/1.881460 CrossRefGoogle Scholar
  10. 10.
    Aguirre-López, M.A., Morales-Castillo, J., Díaz-Hernández, O., Escalera Santos, G.J., Almaguer, F-J.: Trajectories reconstruction of spinning baseball pitches by three-point-based algorithm. Appl. Math. Comput. 319, 2–12 (2018)MathSciNetGoogle Scholar
  11. 11.
    Clark, J.M., Greer, M.L., Semon, M.D.: Modeling pitch trajectories in fastpitch softball. Sports Eng. 18, 157–164 (2015)CrossRefGoogle Scholar
  12. 12.
    Kistemaker, D.A., Faber, H., Beek, P.J.: Catching fly balls: a simulation study of the Chapman strategy. Hum. Mov. Sci. 28, 236–249 (2009)CrossRefGoogle Scholar
  13. 13.
    Nathan, A.M.: Analysis of PITCHf/x pitched baseball trajectories. Document available on: https://www.researchgate.net/publication/228563555_Analysis_of_PITCHfx_Pitched_Baseball_Trajectories (accessed 03 August 2018) (2008)
  14. 14.
    Pane, M.A.: Trouble with the curve: identifying clusters of MLB pitchers using improved pitch classification techniques. PhD Thesis, Carnegie Mellon University (2013)Google Scholar
  15. 15.
    Nagami, T., Higuchi, T., Kanosue, K.: How baseball spin influences the performance of a pitcher. J. Phys. Fitness Sports Med. 2, 63–68 (2013)CrossRefGoogle Scholar
  16. 16.
    Nagami, T., Higuchi, T., Nakata, H., Yanai, T., Kanosue, K.: Relation between lift force and ball spin for different baseball pitches. J. Appl. Biomech. 32, 196–204 (2016)CrossRefGoogle Scholar
  17. 17.
    Nagami, T., Kimura, Y., Kanosue, K., Yanai, T.: Kinematic characteristics of various types of baseball pitches. Jpn. J. Phys. Educ. Health Sport Sci. 61, 589–605 (2016)CrossRefGoogle Scholar
  18. 18.
    Crujeiras, R.M.: An introduction to statistical methods for circular data. Bol. Estad. Investig. Oper. 33, 85–107 (2017)Google Scholar
  19. 19.
    Alam, F., Ho, H., Smith, L., Subic, A., Chowdhury, H., Kumar, A.: A study of baseball and softball aerodynamics. Procedia Eng. 34, 86–91 (2012)CrossRefGoogle Scholar
  20. 20.
    Cross, R., Lindsey, C.: Measurements of drag and lift on smooth balls in flight. Eur. J. Phys. 38, 044002 (2017)CrossRefGoogle Scholar
  21. 21.
    Kensrud, J.R., Smith, L.V.: In situ drag measurements of sports balls. Procedia Eng. 2, 2437–2442 (2010)CrossRefGoogle Scholar
  22. 22.
    Sayers, A.T., Hill, A.: Aerodynamics of a cricket ball. J. Wind Eng. Ind. Aerodyn. 79, 169–182 (1999)CrossRefGoogle Scholar
  23. 23.
    Goodwill, S.R., Chin, S.B., Haake, S.J.: Aerodynamics of spinning and non-spinning tennis balls. J. Wind Eng. Ind. Aerodyn. 92, 935–958 (2004)CrossRefGoogle Scholar
  24. 24.
    Core Team, R: R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/ (2018)
  25. 25.
    Nathan, A. The physics of a baseball. http://baseball.physics.illinois.edu/pitchtracker.html
  26. 26.
    Kagan, D., Nathan, A.: Simplified models for the drag coefficient of a pitched baseball. Phys. Teach.  https://doi.org/10.1119/1.4872406

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Facultad de Ciencias Físico-MatemáticasUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico
  2. 2.Facultad de Ciencias en Física y MatemáticasUniversidad Autónoma de ChiapasTuxtla GutiérrezMexico
  3. 3.Facultad de Ciencias en Física y MatemáticasCátedra CONACyT-UNACHTuxtla GutiérrezMexico
  4. 4.Facultad de Ingeniería Mecánica y EléctricaUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico

Personalised recommendations