Advertisement

On continuous inkjet systems: a printer driver for expiry date labels on cylindrical surfaces

  • Mario A. Aguirre-López
  • F-Javier Almaguer
  • O. Díaz-Hernández
  • Gerardo J. Escalera Santos
  • Javier Morales-CastilloEmail author
Article
  • 1 Downloads

Abstract

Continuous inkjet systems are commonly used to print expiry date labels for food products. These systems are designed to print on flat surfaces; however, a lot of food products package have a cylindrical shape (e.g., bottled and canned products) which causes an enlargement in characters at the ends of the label. In this work, we present an algorithm to correct this defect by calculating the extra-distance that an ink drop travels when the printing surface approaches an elliptic cylinder. Each charged ink drop is modeling as a solid particle which is affected by the air drag, Earth’s gravitation, and voltage due to the electrical field that causes the perturbation in the ink drop path. Numerical results show the correction of the enlargement mentioned above by varying the electric field along the width of the label. In addition, the equation and the values of a second electric field to correct the printing’s inclination caused by the method of the system’s operation are presented.

Keywords

Continuous inkjet system Printer driver Food industry Ballistic trajectory Drop dynamics 

Mathematics Subject Classification (2010)

37M05 68-04 68U20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We make a special thanks to Mr. Jorge A. Cárdenas S. for providing the image of the seasoning bottle from El Pariente JC.

Funding information

We thank the CONACyT, UANL, and UNACH for the financial support and for providing their facilities.

References

  1. 1.
    Caswell, J.A., Mojduszka, E.M.: Using informational labeling to influence the market for quality in food products. Am. J. Agric. Econ. 78, 1248–1253 (1996)CrossRefGoogle Scholar
  2. 2.
    Mumcu, Y., Kimzan, H.S.: The effect of visual product aesthetics on consumers’ price sensitivity. Procedia Economics and Finance 26, 528–534 (2015)CrossRefGoogle Scholar
  3. 3.
    Schmitt, B.: Experience marketing: concepts, frameworks and consumer insights. Foundations and Trends in Marketing 5(2), 55–112 (2010)CrossRefGoogle Scholar
  4. 4.
    Xu, L., Sun, D.: Electrohydrodynamic printing under applied pole-type nozzle configuration. Appl. Phys. Lett. 102, 024101 (2013)CrossRefGoogle Scholar
  5. 5.
    Yudistira, H.T., Nguyen, V.D., Dutta, P., Byun, D.: Flight behavior of charged droplets in electrohydrodynamic inkjet printing. Appl. Phys. Lett. 96, 02503 (2010)CrossRefGoogle Scholar
  6. 6.
    Chen, C.-H., Saville, D.A., Aksay, I.A.: Scaling laws for pulsed electrohydrodynamic drop formation. Appl. Phys. Lett. 89, 124103 (2006)CrossRefGoogle Scholar
  7. 7.
    Prasetyo, F.D., Yudistira, H.D., Nguyen, V.D., Byun, D.: Ag dot morphologies printed using electrohydrodynamic (EHD) jet printing based on a drop-on-demand (DOD) operation. J. Micromech. Microeng. 23, 095028 (2013)CrossRefGoogle Scholar
  8. 8.
    Nguyen, V.D., Byun, D.: Mechanism of electrohydrodynamic printing based on ac voltage without a nozzle electrode. Appl. Phys. Lett. 94, 17359 (2009)Google Scholar
  9. 9.
    Lee, J.S., Kim, S.Y., Kim, Y.J., Park, J., Kim, Y., Hwang, J., Kim, Y.J.: Design and evaluation of a silicon based multi-nozzle for addressable jetting using a controlled flow rate in electrohydrodynamic jet printing. Appl. Phys. Lett. 93, 243114 (2008)CrossRefGoogle Scholar
  10. 10.
    Alper, J.: Biology and the inkjets. Science 305, 1895 (2004)CrossRefGoogle Scholar
  11. 11.
    Dong, H., Carr, W., Morris, J.: Visualization of drop-on-demand inkjet: drop formation and deposition. Rev. Sci. Instrum. 77, 085101 (2006)CrossRefGoogle Scholar
  12. 12.
    Sedighi, N., Murad, S., Aggarwal, S.K.: Molecular dynamics simulations of nanodroplet spreading on solid surfaces, effect of droplet size. Fluid Dyn. Res. 42, 035501 (2010)CrossRefzbMATHGoogle Scholar
  13. 13.
    Henmi, C., Nakamura, M., Nishiyama, Y., Yamaguchi, K., Mochizuki, S., Takiura, K., Nakagawa, H.: Development of an effective three dimensional fabrication technique using inkjet technology for tissue model samples. Japanesse Society for Alternatives to Animal Experiments, 689–692 (2008)Google Scholar
  14. 14.
    Tyson, J.: How inkjet printers work. https://computer.howstuffworks.com/inkjet-printer.htm, Accessed on 21.11.2017 (2001)
  15. 15.
    Taplin, L.A.: Spectral modeling of a six-color inkjet printer (2001). Master thesis. https://pdfs.semanticscholar.org/7c4a/c47a7a4bcec3a468f08126a38144d36e7dfc.pdf, Accessed on 21.11.2017
  16. 16.
    Calvert, P.: Inkjet Printing for Materials and Devices. Chem. Mater. 13, 3299–3305 (2001)CrossRefGoogle Scholar
  17. 17.
    Kim, Y., Ren, X., Kim, J. W., Noh, H.: Direct inkjet printing of micro-scale silver electrodes on polydimethylsiloxane (PDMS) microchip. J. Micromech. Microeng. 24, 115010 (2014)CrossRefGoogle Scholar
  18. 18.
    Zhang, Y., Liu, C., Whalley, D.C.: The penetration limit of poly(4-vinyl phenol) thin films for etching via holes by inkjet printing. Appl. Phys. Lett. 101, 253302 (2012)CrossRefGoogle Scholar
  19. 19.
    Merrin, J., Leibler, S., Chuang, J.S.: Printing multistrain bacterial patterns with a piezoelectric inkjet printer. PLoS ONE 2(7), e663 (2007)CrossRefGoogle Scholar
  20. 20.
    Rayleigh, L.: Further observations upon liquid jets. In: Continuation of those recorded in the Royal Society’s Proceedings for March and May, 1879. Proceedings of the Royal Society of London, 130–145 (1882)Google Scholar
  21. 21.
    Andrade, E.N., da, C., Tsein, L.C.: The velocity-distribution in a liquid-into-liquid jet. Proc. Phys. Soc. 49, 381–391 (1937)CrossRefGoogle Scholar
  22. 22.
    Martin, G.D., Hoath, S.D., Hutchings, I.M.: Inkjet printing - the physics of manipulating liquid jets and drops. Engineering and Physics—Synergy for Success 105, 012001 (2008)Google Scholar
  23. 23.
    Halterman, H.J.: Kinetics and evaporation of water drops in air, IMAG (2003)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Universidad Autónoma de Nuevo León, Facultad de Ciencias Físico-MatemáticasNuevo LeónMéxico
  2. 2.Universidad Autónoma de Chiapas, Facultad de Ciencias en Física y MatemáticasChiapasMéxico
  3. 3.Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y EléctricaNuevo LeónMéxico

Personalised recommendations