Advertisement

On error indicators for optimizing parameters in stabilized methods

  • Petr Knobloch
  • Petr LukášEmail author
  • Pavel Solin
Article
  • 13 Downloads

Abstract

Numerical solution of convection-dominated problems requires special techniques to suppress spurious oscillations in approximate solutions. Often, stabilized methods are applied which involve user-chosen parameters. These parameters significantly influence the quality of the solution but their optimal choice is usually not known. One possibility is to define them in an adaptive way by minimizing an error indicator characterizing the quality of the approximate solution. A non-trivial requirement on the error indicator is that its minimization with respect to the stabilization parameters should suppress spurious oscillations without smearing layers. In this paper, a new error indicator is introduced and its suitability is tested on two newly proposed benchmark problems for which previously proposed indicators do not provide satisfactory results.

Mathematics Subject Classification (2010)

65N30 65N12 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding information

The work of P. Knobloch and P. Lukáš was supported through the grant No. 16-03230S of the Czech Science Foundation.

References

  1. 1.
    Roos, H.-G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations. Convection–Diffusion–Reaction and Flow Problems, 2nd edn. Springer, Berlin (2008)zbMATHGoogle Scholar
  2. 2.
    John, V., Knobloch, P.: On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations: Part II – Analysis for P 1 and Q 1 finite elements. Comput. Methods Appl. Mech. Eng. 197, 1997–2014 (2008)CrossRefzbMATHGoogle Scholar
  3. 3.
    John, V., Knobloch, P., Savescu, S.B.: A posteriori optimization of parameters in stabilized methods for convection–diffusion problems - Part I. Comput. Methods Appl. Mech. Eng. 200, 2916–2929 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    John, V., Knobloch, P.: Adaptive computation of parameters in stabilized methods for convection–diffusion problems. In: Cangiani, A., Davidchack, R.L., Georgoulis, E.H., Gorban, A., Levesley, J., Tretyakov, M.V. (eds.) Numerical Mathematics and Advanced Applications 2011, Proceedings of ENUMATH 2011, pp 275–283. Springer, Berlin (2013)Google Scholar
  5. 5.
    Lukáš, P.: Optimization of parameters in SDFEM for different spaces of parameters. Appl. Math. Comput. 267, 711–715 (2015)MathSciNetGoogle Scholar
  6. 6.
    Lukáš, P.: A posteriori optimization of parameters in the SUPG method for higher degree FE spaces. In: Knobloch, P. (ed.) Boundary and Interior Layers, Computational and Asymptotic Methods – BAIL 2014, Lect. Notes Comput. Sci. Eng., vol. 108, pp 171–182. Springer (2015)Google Scholar
  7. 7.
    Lukáš, P., Knobloch, P.: Adaptive techniques in SOLD methods. Appl. Math. Comput. 319, 24–30 (2018)MathSciNetGoogle Scholar
  8. 8.
    Bernardi, C., Girault, V., Hecht, F.: A posteriori analysis of a penalty method and application to the Stokes problem. Math. Models Methods Appl. Sci. 13, 1599–1628 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ainsworth, M., Allendes, A., Barrenechea, G.R., Rankin, R.: On the adaptive selection of the parameter in stabilized finite element approximations. SIAM J. Numer. Anal. 51, 1585–1609 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Silvester, D.: Optimal low order finite element methods for incompressible flow. Comput. Methods Appl. Mech. Eng. 111, 357–368 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, New York (1978)zbMATHGoogle Scholar
  12. 12.
    Šolín, P.: Partial Differential Equations and the Finite Element Method. Wiley, Hoboken (2005)zbMATHGoogle Scholar
  13. 13.
    Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    John, V., Knobloch, P.: On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations: Part I – A review. Comput. Methods Appl. Mech. Eng. 196, 2197–2215 (2007)CrossRefzbMATHGoogle Scholar
  15. 15.
    Giles, M.B., Pierce, N.A.: An introduction to the adjoint approach to design. Flow Turbul Combust 65, 393–415 (2000)CrossRefzbMATHGoogle Scholar
  16. 16.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006)zbMATHGoogle Scholar
  17. 17.
    Alnæs, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, Ch., Ring, J., Rognes, M.E., Wells, G.N.: The FEniCS project version 1.5. Archive of Numerical Software 3(100), 9–23 (2015).  https://doi.org/10.11588/ans.2015.100.20553 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Mathematics and PhysicsCharles UniversityPraha 8Czech Republic
  2. 2.University of NevadaRenoUSA

Personalised recommendations