Advertisement

Advances in Computational Mathematics

, Volume 45, Issue 2, pp 707–734 | Cite as

An accurate spectral method for the transverse magnetic mode of Maxwell equations in Cole-Cole dispersive media

  • Can Huang
  • Li-Lian WangEmail author
Article

Abstract

In this paper, we propose an accurate numerical means built upon a spectral-Galerkin method in spatial discretization and an enriched multi-step spectral-collocation approach in temporal direction, for the transverse magnetic mode of Maxwell equations in Cole-Cole dispersive media in two-dimensional setting. Our starting point is to derive a new model involving only one unknown field from the original model with three unknown fields: electric, magnetic fields, and the induced electric polarization (described by a global temporal convolution of the electric field). This results in a second-order integral-differential equation with a weakly singular integral kernel expressed by the Mittag-Lefler (ML) function. The most interesting but challenging issue resides in how to efficiently deal with the singularity in time induced by the ML function which is an infinite series of singular power functions with different nature. With this in mind, we introduce a spectral-Galerkin method using Fourier-like basis functions for spatial discretization, leading to a sequence of decoupled temporal integral-differential equations (IDE) with the same weakly singular kernel involving the ML function as the original two-dimensional problem. With a careful study of the regularity of IDE, we incorporate several leading singular terms into the numerical scheme and approximate much regular part of the solution. Then, we solve the IDE by a multi-step well-conditioned collocation scheme together with mapping technique to increase the accuracy and enhance the resolution. We show that such an enriched collocation method is convergent and accurate.

Keywords

Cole-Cole media Dispersive Spectral method Non-polynomial approximation 

Mathematics Subject Classification (2010)

65N35 65E05 65N12 41A10 41A25 41A30 41A58 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to thank both universities for hosting their mutual visits to complete this work.

Funding information

The research of author Can Huang is supported by the National Natural Science Foundation of China (no. 11401500, 91630204, 11771363).

The research of author Li-Lian Wang is partially supported by Singapore MOE AcRF Tier 1 Grant (RG 15/12) and Singapore MOE AcRF Tier 2 Grants (MOE2017-T2-2-014 and MOE2018-T2-1-059).

References

  1. 1.
    Baker, G.A.: Error estimates for finite element methods for second order hyperbolic equations. SIAM J. Numer. Anal. 13, 564–576 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Banks, H.T., Bokil, V.A., Gibson, N.L.: Analysis of stability and dispersion in a finite element method for debye and lorentz media. Numer. Methods Partial Differ. Equ. 25, 885–917 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Dover, New York (2001)zbMATHGoogle Scholar
  4. 4.
    Brunner, H.: Collocation Methods for Volterra and Related Functional Differential Equations. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  5. 5.
    Cannarsa, P., Sforza, D.: A stability result for a class of nonlinear integro-differential equations with l 1 kernels. Appl. Math. (Warsaw) 35, 395–430 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods. Scientific Computation. Springer, Berlin (2006). Fundamentals in single domainszbMATHGoogle Scholar
  7. 7.
    Cao, Y., Herdman, T., Xu, Y.: A hybrid collocation method for Volterra integral equations with weakly singular kernels. SIAM J. Numer. Anal. 41, 364–381 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Causley, M.: Asymptotic and numerical analysis of time-dependent wave propagation in dispersive dielectric media that exhibit fractional relaxation. Ph.D. dissertation, Rutgers-Newark (2011)Google Scholar
  9. 9.
    Cole, K., Cole, R.: Dispersion and absorption in dielectrics, I: alternating current characteristics. J. Chem. Phys. 9(4), 341–352 (1941)CrossRefGoogle Scholar
  10. 10.
    Cooper, J., Marx, B., Buhl, J., Hombach, V.: Determination of safety distance limits for a human near a cellular base station antenna, adopting the IEEE standard or ICNIRP guidelines. Bioelectromagnetics 23, 429–443 (2000)CrossRefGoogle Scholar
  11. 11.
    Feng, K., Qin, M.Z.: Symplectic Geometric Algorithms for Hamiltonian Systems. Zhejiang Science & Technology Press, Hangzhou (2003)Google Scholar
  12. 12.
    Gabriel, C., Gabriel, S.: Compilation of the dielectric properties of body tissues at RF and microwave frequencies. U.S.A.F Armstrong Lab, Brooks AFB, TX, Technical Rep. AL/OE-TR-1996-0037 (1996)Google Scholar
  13. 13.
    Gorenflo, R., Kilbas, A., Mainardi, F., Rogosin, S.: Mittag-Leffler Functions, Related Topics and Applications. Springer, Berlin (2014)CrossRefzbMATHGoogle Scholar
  14. 14.
    Huang, C., Stynes, M.: A spectral collocation method for a weakly singular Volterra integral equation of the second kind. Adv. Comput. Math. 42(5), 1015–1030 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Jiao, D., Jin, J.M.: Time-domain finite element modeling of dispersive media. IEEE Microw. Wirel. Compon. Lett. 11, 220–222 (2001)CrossRefGoogle Scholar
  16. 16.
    Jiang, S., Zhang, J., Zhang, Q., Zhang, Z.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21, 650–678 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kim, T., Kim, J., Pack, J.: Dispersive effect of UWB pulse on human head. Electromagnetic Compatibility. In: EMC Zurich, 18th International Zurich Symposium (2007)Google Scholar
  18. 18.
    Lason, S., Saedpanah, F.: The continuous Galerkin method for an integro-differential equation modeling fractional dynamic order viscoelasticity. IMA J. Numer. Anal. 30, 964–986 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Li, J.: A fast time stepping method for evaluating fractional integrals. SIAM J. Sci. Comput. 31, 4696–4714 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Li, J.C., Huang, Y.Q., Lin, Y.P.: Developing finite element methods for Maxwell’s equations in a Cole-Cole dispersive medium. SIAM J. Sci. Comput. 33(6), 3153–3174 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Liu, W.B., Shen, J.: A new efficient spectral-Galerkin method for singular perturbation problems. J. Sci. Comput. 11, 411–437 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Liu, W.B., Tang, T.: Error analysis for a Galerkin-spectral method with coordinate transformation for solving singularly perturbed problems. Appl. Numer. Math. 38(3), 315–345 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Lu, T., Zhang, P., Cai, W.: Discontinuous Galerkin methods for dispersive and lossy Maxwell’s equations and pml boundary conditions. J. Comput. Phys. 200, 549–580 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    McLean, W.: Fast summation by interval clustering for an evolution equation with memory. SIAM J. Sci. Comput. 34(6), A3039–A3056 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)zbMATHGoogle Scholar
  26. 26.
    Rekanos, I., Papadopoulos, T.: An auxiliary differential equation method for FDTD modeling of wave propagation in Cole-Cole dispersive media. IEEE Trans. Antennas Propag. 58(11), 3666–3674 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Rekanos, I., Yioultsis, T.: Approximation of Grüwald-Letnikov fractional derivative for FDTD modeling of Cole-Cole media. IEEE Trans. Magn. 50(2), 7004304 (2014)CrossRefGoogle Scholar
  28. 28.
    Repo, T., Pulli, S.: Application of impedance spectroscopy for selecting frost hardy varieties of English ryegrass. Ann. Bot. 78, 605–609 (1996)CrossRefGoogle Scholar
  29. 29.
    Saedpanah, F.: Well-posedness of an integro-differential equation with positive type kernels modeling fracional order viscoelasiticity. Eur. J. Mech. A-Solid 44, 201–211 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Shelby, R.A., Smith, D.R., Nemat-Nasser, S.C., Schultz, S.: Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial. Appl. Phys. Lett. 78, 489–491 (2001)CrossRefGoogle Scholar
  31. 31.
    Shen, J.: Efficient spectral-Galerkin method I. direct solvers for second- and fourth-order equations by using Legendre polynomials. SIAM J. Sci. Comput. 15(6), 1489–1505 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis and applications, volume 41 of Series in Computational Mathematics. Springer, Berlin (2011)CrossRefGoogle Scholar
  33. 33.
    Shen, J., Wang, L.L.: Fourierization of the Legendre-Galerkin method and a new space-time spectral method. Appl. Numer. Math. 57, 710–720 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Smith, D.R., Kroll, N.: Negative refractive index in left-handed materials. Phys. Rev. Lett. 85, 2933–2936 (2000)CrossRefGoogle Scholar
  35. 35.
    Stein, E.M., Shakarchi, R.: Complex Analysis. Princeton University Press, Princeton and Oxford (2002)zbMATHGoogle Scholar
  36. 36.
    Strauss, W.: Partial Differential Equations: an Introduction, 2nd edn. Wiley, Brown University (2007)Google Scholar
  37. 37.
    Tofighi, M.: FDTD modeling of biological tissues Cole-Cole dispersion for 0.5–30 GHz using relaxation time distribution samples-novel and improved implementations. IEEE Microw. Theory Tech. 57(10), 2588–2596 (2009)CrossRefGoogle Scholar
  38. 38.
    Torres, F., Vaudon, P., Jecko, B.: Application of fractional derivatives to the FDTD modeling of pulse propagation in a Cole-Cole dispersive medium. Microw. Opt. Technol. Lett. 13/5, 300–304 (1996)CrossRefGoogle Scholar
  39. 39.
    Wang, B., Xie, Z., Zhang, Z.: Error analysis of a discontinuous Galerkin method for Maxwell equations in dispersive media. J. Comput. Phys. 229, 8552–8563 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Wang, L.L., Samson, M.D., Zhao, X.D.: A well-conditioned collocation method using a pseudospectral integration matrix. SIAM J. Sci. Comput. 36(3), A907–A929 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Wang, L.L., Shen, J.: Error analysis for mapped Jacobi spectral methods. J. Sci. Comput. 24, 183–218 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Xiang, S.: On interpolation approximation: convergence rates for polynomial interpolation for functions of limited regularity. SIAM J. Numer. Anal. 54(4), 2081–2113 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Yosida, K.: Functional Analysis, volume 123 of Grundlehren der Mathematischen Wissenschaften, 6th edn. Springer, Berlin-New York (1980)Google Scholar
  44. 44.
    Ziolkowski, R.W.: Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs. Opt. Express 11, 662–681 (2003)CrossRefGoogle Scholar
  45. 45.
    Ziolkowski, R.W., Heyman, E.: Wave propagation in media having negative permittivity and permeability. Phys. Rev. E 64, 056625 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematical Sciences and Fujian Provincial Key Laboratory on Mathematical Modeling & High Performance Scientific ComputingXiamen UniversityFujianChina
  2. 2.Division of Mathematical Sciences, School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore

Personalised recommendations