Advertisement

Advances in Computational Mathematics

, Volume 45, Issue 2, pp 631–653 | Cite as

New integer-order approximations of discrete-time non-commensurate fractional-order systems using the cross Gramian

  • Marek RydelEmail author
Open Access
Article

Abstract

This paper presents a new approach to modeling of linear time-invariant discrete-time non-commensurate fractional-order single-input single-output state space systems by means of the Balanced Truncation and Frequency Weighted model order reduction methods based on the cross Gramian. These reduction methods are applied to the specific rational (integer-order) FIR-based approximation to the fractional-order system, which enables to introduce simple, analytical formulae for determination of the cross Gramian of the system. This leads to significant decrease of computational burden in the reduction algorithm. As a result, a rational and relatively low-order state space approximator for the fractional-order system is obtained. A simulation experiment illustrates an efficiency of the introduced methodology in terms of high approximation accuracy and low time complexity of the proposed method.

Keywords

Model order reduction Cross Gramian Frequency weighted Non-commensurate fractional order system FIR-based approximation 

Mathematics Subject Classification (2010)

78M34 26A33 37M99 

Notes

Acknowledgements

The author is indebted to Prof. Krzysztof J. Latawiec and Prof. Rafał Stanisławski for their stimulating discussions and to anonymous reviewers for their instructive comments.

Funding information

This work was supported by the Polish National Science Centre on the base of decision no. DEC-2017/01/X/ST7/00885.

References

  1. 1.
    Adolfsson, K., Enelund, M., Olsson, P.: On the fractional order model of viscoelasticity. Mec. Time-Dependent Mater. 9(1), 15–34 (2005)CrossRefGoogle Scholar
  2. 2.
    Al-Alaoui, M.A.: Al-Alaoui operator and the new transformation polynomials for discretization of analogue systems. Electr. Eng. 90(6), 455–467 (2008)CrossRefGoogle Scholar
  3. 3.
    Aldhaheri, R.W.: Model order reduction via real Schur-form decomposition. Int. J. Control. 53(3), 709–716 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Aldhaheri, R.W.: Design of low order IIR filters with an arbitrary frequency range via frequency domain cross Gramian. In: Proc. of the 1st International Conference on Modeling, Simulation and Applied Optimization (2005)Google Scholar
  5. 5.
    Aldhaheri, R.W.: Frequency-domain model reduction approach to design IIR digital filters using orthonormal bases. AEU - Int. J. Electron. Commun. 60(6), 413–420 (2006)CrossRefGoogle Scholar
  6. 6.
    Antoulas, A.: Approximation of Large-Scale Dynamical System. SIAM, Philadelphia (2005)CrossRefzbMATHGoogle Scholar
  7. 7.
    Baranowski, J., Bauer, W., Zagórowska, M., Piatek, P.: On digital realizations of non-integer order filters. Circ. Syst. Signal Process. 35(6), 2083–2107 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Baur, U.: Low rank solution of data-sparse Sylvester equations. Numer. Linear Algebra Appl., 15(9) (2008)Google Scholar
  9. 9.
    Baur, U., Benner, P.: Cross-Gramian based model reduction for data-sparse systems. Electron. Trans. Numer. Anal. 31, 256–270 (2008)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Benner, P., Kürschner, P., Saak, J.: Frequency-limited balanced truncation with low-rank approximations. SIAM J. Sci. Comput. 38(1), A471–A499 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Biswas, K., Bohannan, G., Caponetto, R., Mendes Lopes, A., Tenreiro Machado, J.A.: Fractional-Order Devices. SpringerBriefs in Nonlinear Circuits Springer International Publishing (2017)Google Scholar
  12. 12.
    Chen, Y.Q., Moore, K.L.: Discretization schemes for fractional-order differentiators and integrators. IEEE Trans. Circuts Systems I: Fund. Theory Appl. 49(3), 363–365 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Condon, M., Ivanov, R.: Empirical balanced truncation of nonlinear systems. J. Nonlinear Sci. 14(5), 405–414 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Datta, K.: The matrix equation XA – BX = R and its applications. Linear Algebra Appl. 109, 91–105 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Deng, Z., Cao, H., Li, X., Jiang, J., Yang, J., Qin, Y.: Generalized predictive control for fractional order dynamic model of solid oxide fuel cell output power. J. Power. Sources 195(24), 8097–8103 (2010)CrossRefGoogle Scholar
  16. 16.
    Enns, D.: Model reduction with balanced realizations: an error bound and frequency weighted generalization. In: 23rd IEEE Conf. on Decision and Control, pp. 127–132 (1984)Google Scholar
  17. 17.
    Fernando, K., Nicholson, H.: On the structure of balanced and other principal representations of SISO systems. IEEE Trans. Autom. Control 28(2), 228–231 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Fernando, K., Nicholson, H.: On the cross-Gramian for symmetric MIMO systems. IEEE Trans. Circ. Syst. 32(5), 487–489 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gabano, J., Poinot, T.: Fractional modelling and identification of thermal systems. Signal Process. 91(3), 531–541 (2011)CrossRefzbMATHGoogle Scholar
  20. 20.
    Gabano, J.D., Poinot, T., Huard, B.: Bounded diffusion impedance characterization of battery electrodes using fractional modeling. Commun. Nonlinear Sci. Numer. Simul. 47, 164–177 (2017)CrossRefGoogle Scholar
  21. 21.
    Garrappa, R., Maione, G.: Model order reduction on Krylov subspaces for fractional linear systems. IFAC Proc. 46(1), 143–148 (2013). 6th IFAC Workshop on Fractional Differentiation and Its ApplicationsCrossRefGoogle Scholar
  22. 22.
    Gawronski, W., Juang, J.: Model reduction in limited time and frequency intervals. Int. J. Syst. Sci. 21(2), 349–376 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Gosea, I.V., Petreczky, M., Antoulas, A.C., Fiter, C.: Balanced truncation for linear switched systems. Advances in Computational Mathematics.  https://doi.org/10.1007/s10444-018-9610-z (2018)
  24. 24.
    Hahn, J., Edgar, T.F.: An improved method for nonlinear model reduction using balancing of empirical Gramians. Comput. Chem. Eng. 26(10), 1379–1397 (2002)CrossRefGoogle Scholar
  25. 25.
    Haider, K.S., Ghafoor, A., Imran, M., Malik, F.M.: Model reduction of large scale descriptor systems using time limited Gramians. Asian J. Control 19(3), 1217–1227 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Himpe, C., Ohlberger, M.: A note on the cross Gramian for non-symmetric systems. Syst. Sci. Control Eng. 4(1), 199–208 (2016)CrossRefGoogle Scholar
  27. 27.
    Himpe, C., Ohlberger, M.: Cross-Gramian-based model reduction: a comparison. In: Benner, P., Ohlberger, M., Patera, A., Rozza, G., Urban, K. (eds.) Model Reduction of Parametrized Systems, pp 271–283. Springer International Publishing (2017)Google Scholar
  28. 28.
    Imran, M., Ghafoor, A., Imran, M.: Frequency limited model reduction techniques with error bounds. IEEE Trans. Circ. Syst. II: Express Briefs 65(1), 86–90 (2018)zbMATHGoogle Scholar
  29. 29.
    Imran, M., Ghafoor, A., Sreeram, V.: A frequency weighted model order reduction technique and error bounds. Automatica 50(12), 3304–3309 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Ionescu, C., Lopes, A., Copot, D., Machado, J.A.T., Bates, J.H.T.: The role of fractional calculus in modeling biological phenomena: a review. Commun. Nonlinear Sci. Numer. Simul. 51, 141–159 (2017)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Jazlan, A., Sreeram, V., Shaker, H.R., Togneri, R., Minh, H.B.: Frequency interval cross Gramians for linear and bilinear systems. Asian J. Control 19(1), 22–34 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Jazlan, A., Sreeram, V., Togneri, R.: Cross Gramian based time interval model reduction. In: Australian Control Conference, pp. 139–141 (2015)Google Scholar
  33. 33.
    Jbilou, K.: Low rank approximate solutions to large Sylvester matrix equations. Appl. Math. Comput. 177(1), 365–376 (2006)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Jesus, I.S., Tenreiro Machado, J.A.: Fractional control of heat diffusion systems. Nonlinear Dyn. 54(3), 263–282 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Jiang, Y., Xu, K.: H2 optimal reduced models of general MIMO LTI systems via the cross Gramian on the Stiefel manifold. J. Franklin Inst. 354(8), 3210–3224 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Krajewski, W., Viaro, U.: A method for the integer-order approximation of fractional-order systems. J. Franklin Inst. 351(1), 555–564 (2014)CrossRefzbMATHGoogle Scholar
  37. 37.
    Kürschner, P.: Balanced truncation model order reduction in limited time intervals for large systems. Advances in Computational Mathematics.  https://doi.org/10.1007/s10444-018-9608-6 (2018)
  38. 38.
    Laub, A., Heath, M., Paige, C., Ward, R.: Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms. IEEE Trans. Autom. Control 32(2), 115–122 (1987)CrossRefzbMATHGoogle Scholar
  39. 39.
    Laub, A.J., Silverman, L.M., Verma, M.: A note on cross-Grammians for symmetric realizations. Proc. IEEE 71(7), 904–905 (1983)CrossRefGoogle Scholar
  40. 40.
    Lin, C., Chiu, T.: Model reduction via frequency weighted balanced realization. Theory Adv. Technol. 8, 341–451 (1992)MathSciNetGoogle Scholar
  41. 41.
    Mansouri, R., Bettayeb, M., Djennoune, S.: Optimal reduced-order approximation of fractional dynamical systems. AIP Conf. Proc. 1019(1), 127–132 (2008)CrossRefGoogle Scholar
  42. 42.
    Mashayekhi, S., Miles, P., Hussaini, M.Y., Oates, W.S.: Fractional viscoelasticity in fractal and non-fractal media: Theory, experimental validation, and uncertainty analysis. J. Mech. Phys. Solids 111, 134–156 (2018)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Moaveni, B., Khaki-Sedigh, A.: A new approach to compute the cross-Gramian matrix and its application in input-output pairing of linear multivariable plants. J. Appl. Sci. 8(4), 608–614 (2008)CrossRefGoogle Scholar
  44. 44.
    Monje, C., Chen, Y., Vinagre, B., Xue, D., Feliu-Batlle, V.: Fractional-Order Systems and Controls: Fundamentals and Applications. Series on Advances in Industrial Control. Springer, London (2010)CrossRefzbMATHGoogle Scholar
  45. 45.
    Moore, B.: Principal component analysis in linear systems: Controllability, observability and model reduction. IEEE Trans. Autom. Control AC–26(1), 17–32 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Oustaloup, A., Levron, F., Mathieu, B., Nanot, F.M.: Frequency-band complex noninteger differentiator: Characterization and synthesis. IEEE Trans. Circ. Syst. I: Fund. Theory Appl. 47(1), 25–39 (2000)CrossRefGoogle Scholar
  47. 47.
    Podlubny, I.: Fractional Differential Equations. Academic Press, Orlando (1999)zbMATHGoogle Scholar
  48. 48.
    Podlubny, I.: Fractional-order systems and P I λ D μ controllers. IEEE Trans. Autom. Control 44(1), 208–214 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Rydel, M., Stanisławski, R.: A new frequency weighted Fourier-based method for model order reduction. Automatica 88, 107–112 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Rydel, M., Stanisławski, W.: Selection of reduction parameters for complex plant MIMO LTI models using the evolutionary algorithm. Math. Comput. Simul. 140, 94–106 (2017)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Sabatier, J., Aoun, M., Oustaloup, A., Grgoire, G., Ragot, F., Roy, P.: Fractional system identification for lead acid battery state of charge estimation. Signal Process. 86(10), 2645–2657 (2006)CrossRefzbMATHGoogle Scholar
  52. 52.
    Safonov, M.G., Chiang, R.Y.: A Schur method for balanced-truncation model reduction. IEEE Trans. Autom. Control 34(7), 729–733 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Shaker, H.R., Tahavori, M.: Control configuration selection for bilinear systems via generalised Hankel interaction index array. Int. J. Control. 88(1), 30–37 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Shen, J., Lam, J.: \(H_{\infty }\) model reduction for positive fractional order systems. Asian J. Control 16(2), 441–450 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Sierociuk, D., Dzieliński, A., Sarwas, G., Petras, I., Podlubny, I., Skovranek, T.: Modelling heat transfer in heterogeneous media using fractional calculus. Philos. Trans. R. Soc. London A: Math. Phys. Eng. Sci., 371(1990) (2013)Google Scholar
  56. 56.
    Sopasakis, P., Sarimveis, H.: Stabilising model predictive control for discrete-time fractional-order systems. Automatica 75, 24–31 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Sorensen, D.C., Antoulas, A.C.: The Sylvester equation and approximate balanced reduction. Linear Algebra Appl. 351-352, 671–700 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Stanisławski, R., Latawiec, K.J.: Fractional-order discrete-time Laguerre filters – a new tool for modeling and stability analysis of fractional-order LTI SISO systems. Discret. Dyn. Nat. Soc., 1–9: Article ID: 9590687 (2016)Google Scholar
  59. 59.
    Stanisławski, R., Latawiec, K.J., Gałek, M., Łukaniszyn, M.: Modeling and identification of a fractional-order discrete-time SISO Laguerre-Wiener system. In: Proceedings of the 19th International Conference on Methods and Models in Automation and Robotics, pp. 165–168. Miedzyzdroje (2014)Google Scholar
  60. 60.
    Stanisławski, R., Rydel, M., Latawiec, K.J.: Modeling of discrete-time fractional-order state space systems using the balanced truncation method. J. Franklin Inst. 354(7), 3008–3020 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Tahavori, M., Shaker, H.R.: Model reduction via time-interval balanced stochastic truncation for linear time invariant systems. Int. J. Syst. Sci. 44(3), 493–501 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Tavakoli-Kakhki, M., Haeri, M.: Model reduction in commensurate fractional-order linear systems. Proc. Institut. Mech. Eng. Part I: J. Syst. Control Eng. 223(4), 493–505 (2009)Google Scholar
  63. 63.
    Varga, A., Anderson, B.: Accuracy-enhancing methods for balancing-related frequency-weighted model and controller reduction. Automatica 39(5), 919–927 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Vinagre, B.M., Petráš, I., Podlubny, I., Chen, Y.Q.: Using fractional order adjustment rules and fractional order reference models in model-reference adaptive control. Nonlin. Dyn. 29(1), 269–279 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Vinagre, B.M., Podlubny, I., Hernandez, A., Feliu, V.: Some approximations of fractional order operators used in control theory and applications. Fract. Calcul. Appl. Anal. 3(3), 231–248 (2000)MathSciNetzbMATHGoogle Scholar
  66. 66.
    Wang, G., Sreeram, V., Liu, W.Q.: A new frequency-weighted balanced truncation method and an error bound. IEEE Trans. Autom. Control 44(9), 1734–1737 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Willcox, K., Megretski, A.: Fourier series for accurate, stable, reduced-order models in large-scale linear applications. SIAM J. Sci. Comput. 26(3), 944–962 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    Zulfiqar, U., Imran, M., Ghafoor, A.: Cross-Gramian based frequency-weighted model order reduction technique. Electron. Lett. 52(16), 1376–1377 (2016)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Electrical, Control and Computer EngineeringOpole University of TechnologyOpolePoland

Personalised recommendations