Advertisement

Advances in Computational Mathematics

, Volume 44, Issue 6, pp 1845–1886 | Cite as

Balanced truncation for linear switched systems

  • Ion Victor GoseaEmail author
  • Mihaly Petreczky
  • Athanasios C. Antoulas
  • Christophe Fiter
Open Access
Article

Abstract

We propose a model order reduction approach for balanced truncation of linear switched systems. Such systems switch among a finite number of linear subsystems or modes. We compute pairs of controllability and observability Gramians corresponding to each active discrete mode by solving systems of coupled Lyapunov equations. Depending on the type, each such Gramian corresponds to the energy associated to all possible switching scenarios that start or, respectively end, in a particular operational mode. In order to guarantee that hard to control and hard to observe states are simultaneously eliminated, we construct a transformed system, whose Gramians are equal and diagonal. Then, by truncation, directly construct reduced order models. One can show that these models preserve some properties of the original model, such as stability and that it is possible to obtain error bounds relating the observed output, the control input and the entries of the diagonal Gramians.

Keywords

Model order reduction Switched systems Balanced truncation Infinite Gramians Controllability Observability 

Mathematics Subject Classification (2010)

93A15 93A30 93B11 93C05 93C10 

Notes

Acknowledgments

Open access funding provided by Max Planck Society.

References

  1. 1.
    Antoulas, A.C.: Approximation of large-scale dynamical systems. SIAM available at.  https://doi.org/10.1137/1.9780898718713 (2005). http://epubs.siam.org/doi/abs/10.1137/1.9780898718713
  2. 2.
    Bastug, M.: Model Reduction of Linear Switched Systems and LPV State-Space Models. Ph.D. thesis, Department of Electronic Systems, Automation and Control, Aalborg University (2015)Google Scholar
  3. 3.
    Bastug, M., Petreczky, M., Wisniewski, R., Leth, J.: Model reduction by nice selections for linear switched systems. IEEE Trans. Autom. Control 61(11), 3422–3437 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Baur, U., Benner, P., Feng, L.: Model order reduction for linear and nonlinear systems: a system-theoretic perspective. Arch. Comput. Meth. Eng. 21, 331–358 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Benner, P., Damm, T., Cruz, Y.R.R.: Dual pairs of generalized lyapunov inequalities and balanced truncation of stochastic linear systems. IEEE Trans. Autom. Control 62(2), 782–791 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57(4), 483–531 (2015). 10.1137/130932715MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Benner, P., Stykel, T.: Model order reduction for differential-algebraic equations: A survey. In: Surveys in Differential-Algebraic Equations IV, Part of the series Differential-Algebraic Equations Forum, chap. 3, pp. 107–160. Springer (2017)Google Scholar
  8. 8.
    Besselink, B.: Model reduction for Nonlinear Control Systems with Stability Preservation and Error Bounds. Ph.D. thesis, Eindhoven University of Technology (2012)Google Scholar
  9. 9.
    Birouche, A., Guilet, J., Mourillon, B., Basset, M.: Gramian based approach to model order-reduction for discrete-time switched linear systems. In: Proceedings of the 18th Mediterranean Conference on Control and Automation, pp. 1224–1229 (2010)Google Scholar
  10. 10.
    Birouche, A., Mourllion, B., Basset, M.: Model reduction for discrete-time switched linear time-delay systems via the H stability. Control. Intell. Syst. 39(1), 1–9 (2011)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Birouche, A., Mourllion, B., Basset, M.: Model order-reduction for discrete-time switched linear systems. Int. J. Syst. Sci. 43(9), 1753–1763 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Chahlaoui, Y., Dooren, P.V.: A collection of benchmark examples for model reduction of linear time invariant dynamical systems (2002). http://slicot.org/20-site/126-benchmark-examples-for-model-reduction
  13. 13.
    Daafouz, J., Riedinger, P., Iung, C.: Stability analysis and control synthesis for switched systems: a switched Lyapunov function approach. IEEE Trans. Autom. Control 47(11), 1883–1887 (2002)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gao, H., Lam, J., Wang, C.: Model simplification for switched hybrid systems. Syst. Control Lett. 55, 1015–1021 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Girard, A., Julius, A.A., Pappas, J.G.: Approximate simulation relations for hybrid systems. Discrete Event Dyn. Syst. 18(2), 163–179 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Goebel, R., Sanfelice, R.G., Teel, A.R.: Hybrid Dynamical Systems: Modeling, Stability, and Robustness. Princeton University Press (2012)Google Scholar
  17. 17.
    Hamann, P., Mehrmann, V.: Numerical solution of hybrid systems of differential-algebraic equations. Comput. Methods Appl. Mech. Eng. 197, 693–705 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Landau, I.D., Lozano, R., M’Saad, M., Karimi, A.: Multimodel adaptive control with switching chap. 13, pp. 457–475. Adaptive Control, part of the series Communications and Control Engineering Springer London (2011)Google Scholar
  19. 19.
    Liberzon, D.: Switching in Systems and Control. Birkhäuser (2008)Google Scholar
  20. 20.
    Mehrmann, V., Stykel, T.: Balanced truncation model reduction for large-scale systems in descriptor form. In: Benner, P., Mehrmann, V., Sorensen, D.C. (eds.) Dimension Reduction of Large-Scale Systems, chap. 45, pp. 83–115. Springer (2005)Google Scholar
  21. 21.
    Mehrmann, V., Wunderlich, L.: Hybrid systems of differential-algebraic equations - Analysis and numerical solution. J. Process. Control 19, 1218–1228 (2009)CrossRefGoogle Scholar
  22. 22.
    Monshizadeh, N., Trentelman, H.L., Camlibel, M.K.: A simultaneous balanced truncation approach to model reduction of switched linear systems. IEEE Trans. Autom. Control 57(12), 3118–3131 (2012)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Moore, B.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Automat. Control 26, 17–32 (1981)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Narendra, K.S., Driollet, O.A., Feiler, M., George, K.: Adaptive control using multiple models, switching and tuning. Int. J. Adapt. Control Signal Process. 17, 87–102 (2003)CrossRefGoogle Scholar
  25. 25.
    Papadopoulos, A.V., Prandini, M.: Model reduction of switched affine systems. Automatica 70, 57–65 (2016)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Pernebo, L., Silverman, L.: Model reduction via balanced state space representation. IEEE Trans. Automat. Control 27, 382–387 (1982)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Petreczky, M.: Realization theory for linear and bilinear switched systems: formal power series approach - Part I: realization theory of linear switched systems. ESAIM Control. Optim. Caluculus Var. 17, 410–445 (2011)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Petreczky, M., van Schuppen, J.H.: Realization theory for linear hybrid systems. IEEE Trans. Autom. Control 55(10), 2282–2297 (2010)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Petreczky, M., van Schuppen, J.H.: Partial-realization theory for linear switched systems - a formal power series approach. Automatica 47, 2177–2184 (2011)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Petreczky, M., Tanwani, A., Trenn, S.: Observability of switched linear systems. In: Hybrid Dynamical System – Control and Observation, from Theory to Application. Springer Verlag (2013)Google Scholar
  31. 31.
    Petreczky, M., Wisniewski, R., Leth, J.: Balanced truncation for linear switched systems. Nonlinear Analysis: Hybrid Systems. Special Issue related to IFAC Conference on Analysis and Design of Hybrid Systems (ADHS 12) 10, 4–20 (2013)zbMATHGoogle Scholar
  32. 32.
    Saak, J., Köhler, M., Benner, P.: M-M.E.S.S. 1.0.1, The Matrix Equations Sparse Solvers Library (2016). http://www.mpi-magdeburg.mpg.de/projects/mess
  33. 33.
    Sandberg, H.: Model Reduction for Linear Time-Varying Systems. Ph.D. thesis, Department of Automatic Control. Lund Institute of Technology, Sweden (2004)Google Scholar
  34. 34.
    Scarciotti, G., Astolfi, A.: Model reduction for hybrid systems with state-dependent jumps. IFAC-PapersOnLine 49(18), 850–855 (2016)CrossRefGoogle Scholar
  35. 35.
    Shaker, H.R., Wisniewski, R.: Generalized gramian framework for model/controller order reduction of switched systems. Int. J. Syst. Sci. 42(8), 1277–1291 (2011)CrossRefGoogle Scholar
  36. 36.
    Shaker, H.R., Wisniewski, R.: Model reduction of switched systems based on switching generalized gramians. Int. J. Innov. Comput. Inf. Control 8(7(B)), 5025–5044 (2012)Google Scholar
  37. 37.
    Sun, Z., Ge, S.S.: Switched Linear Systems: Control and Design. Springer (2005)Google Scholar
  38. 38.
    Sun, Z., Ge, S.S.: Stability Theory of Switched Dynamical Systems. Springer (2011)Google Scholar
  39. 39.
    Trenn, S.: Switched differential algebraic equations. In: Advances in Industrial Control, Dynamics and Control of Switched Electronic Systems, chap. 6. Springer Verlag (2012)Google Scholar
  40. 40.
    Vu, L., Chatterjee, D., Liberzon, D.: Input-to-state stability of switched systems and switching adaptive control. Automatica 43(4), 639–646 (2007)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Zhang, L., Boukas, E., Shi, P.: μ-Dependent model reduction for uncertain discrete-time switched linear systems with average dwell time. Int. J. Control. 82(2), 378–388 (2009)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Zhang, L., Lam, J.: On \(\mathcal {H}_{2}\) model reduction of bilinear systems. Automatica 38, 205–216 (2002)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Zhang, L., Shi, P., Boukas, E., Wang, C.: H-infinity model reduction for uncertain switched linear discrete-time systems. Automatica 44(8), 2944–2949 (2008)CrossRefGoogle Scholar
  44. 44.
    Zheng-Fan, L., Chen-Xiao, C., Wen-Yong, D.: Stability analy sis and H model reduction for switched discrete-time time-delay systems. Math. Probl. Eng. 15 (2014)Google Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Data-Driven System Reduction and Identification (DRI) GroupMax Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
  2. 2.Center de Recherche en InformatiqueSignal et Automatique de Lille (CRIStAL), UMR CNRS 9189, CNRS, Ecole Centrale de LilleVilleneuve d’ AscqFrance
  3. 3.Department of Electrical and Computer EngineeringRice UniversityHoustonUSA
  4. 4.Baylor College of MedicineHoustonUSA
  5. 5.CNRS CRIStAL UMR 9189Université de Lille 1, Sciences et TechnologiesVilleneuve d’ AscqFrance

Personalised recommendations