Advertisement

Enhancing Cas improper integrals computations using extensions of the residue theorem

  • José L. Galán-GarcíaEmail author
  • Gabriel Aguilera-Venegas
  • María Á. Galán-García
  • Pedro Rodríguez-Cielos
  • Iván Atencia-McKillop
  • Yolanda Padilla-Domínguez
  • Ricardo Rodríguez-Cielos
Article
  • 9 Downloads

Abstract

In a previous paper, the authors developed new rules for computing improper integrals which allow computer algebra systems (Cas) to deal with a wider range of improper integrals. The theory used in order to develop such rules where Laplace and Fourier transforms and the residue theorem. In this paper, we describe new rules for computing symbolic improper integrals using extensions of the residue theorem and analyze how some of the most important Cas could improve their improper integral computations using these rules. To achieve this goal, different tests are developed. The Cas considered have been evaluated using these tests. The obtained results show that all Cas involved, considering the new developed rules, could improve their capabilities for computing improper integrals. The results of the evaluations of the Cas are described providing a sorted list of the Cas depending on their scores.

Keywords

Cas Improper integrals Integration rules 

Mathematics Subject Classification (2010)

30E20 30-04 26A33 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Apelblat, A.: Table of Definite and Indefinite Integrals. Elsevier, Amsterdam (1983)zbMATHGoogle Scholar
  2. 2.
    Arfken, G.: Mathematical Methods for Physicists, 3rd edn. Academic Press, Orlando (1985)Google Scholar
  3. 3.
    Aguilera, G., Galán, J.L., García, J.M., Mérida, E., Rodríguez, P.: An accelerated-time simulation of car traffic on a motorway using a CAS. J. Math. Comput. Simul. 104, 21–30 (2014).  https://doi.org/10.1016/j.matcom.2012.03.010 MathSciNetCrossRefGoogle Scholar
  4. 4.
    Aguilera, G., Galán, J.L., Madrid, R., Martínez, A.M., Padilla, Y., Rodríguez, P.: Automated generation of contrapuntal musical compositions using probabilistic logic in derive. J. Math. Comput. Simul. 80(6), 1200–1211 (2010).  https://doi.org/10.1016/j.matcom.2009.04.012 MathSciNetCrossRefGoogle Scholar
  5. 5.
    Aguilera-Venegas, G., Galán-García, J.L., Galán-García, M.Á., Rodríguez-Cielos, P.: Teaching semantic tableaux method for propositional classical logic with a CAS. Int. J. Technol. Math. Educ. 22(2), 85–92 (2015).  https://doi.org/10.1564/tme_v22.2.07 Google Scholar
  6. 6.
    Aguilera-Venegas, G., Galán-García, J.L., Galán-García, M.Á., Lobillo-Mora, G., Martínez-del-Castillo, J., Merino-Córdoba, S., Padilla-Domínguez, Y., Rodríguez-Cielos, P., Rodríguez-Cielos, R.: Parametrization of curves and line integrals with a CAS. Int. J. Technol. Math. Educ. 24(4), 179–190 (2017).  https://doi.org/10.1564/tme_v24.4.02 Google Scholar
  7. 7.
    Aguilera-Venegas, G., Galán-garcía, J.L., Mérida-Casermeiro, E., Rodríguez-Cielos, P.: An accelerated-time simulation of baggage traffic in an airport terminal. J. Math. Comput. Simul. 104, 58–66 (2014).  https://doi.org/10.1016/j.matcom.2013.12.009 MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bronshtein, I.N., Semendyayev, K.A.: Handbook of Mathematics, 3rd edn. Springer, New York (1997)Google Scholar
  9. 9.
    Brown, J.W., Churchill, R.V.: Complex Variables and Applications, 8th edn. McGraw-Hill, New York (2013)Google Scholar
  10. 10.
    Galán–García, J.L., Aguilera–Venegas, G., Galán–García, M.Á., Rodríguez-Cielos, P., Atencia-Mc.Killop, I.: Improving CAS capabilities: new rules for computing improper integrals. Appl. Math. Comput. 316, 525–540 (2018).  https://doi.org/10.1016/j.amc.2016.12.024 MathSciNetGoogle Scholar
  11. 11.
    Galán–García, J.L., Aguilera–Venegas, G., Rodríguez-Cielos, P., Galán–García, M.Á., Padilla-Domíguez, Y., Atencia-McKillop, I., Rodríguez-Cielos, R.: Improving CAS capabilities: new rules for computing improper integrals (Abstract). In: Solin, P., Koudela, L., Pánek, D (eds.) ESCO 2016 (Book of Abstracts), p 96. University of West Bohemia, Pilsen, Czech Republic (2016)Google Scholar
  12. 12.
    Galán–García, J.L., Aguilera–Venegas, G., Rodríguez-Cielos, P., Galán–García, M.Á., Padilla-Domíguez, Y., Atencia-McKillop, I., Rodríguez-Cielos, R.: Improving CAS capabilities: new rules for computing improper integrals (Abstract). In: Solin, P., Karban, P., Ruis, J (eds.) ESCO 2018. 6th European Seminar on Computing (Book of Abstracts), p 142. University of West Bohemia, Pilsen, Czech Republic (2018)Google Scholar
  13. 13.
    Henrici, P.: Applied and Computational Complex Analysis, vol. 1: Power Series, Integration, Conformal Mapping, Location of Zeros. Wiley, New York (1988)zbMATHGoogle Scholar
  14. 14.
    Vladimirov, V.S.: Equations of Mathematical Physics. Dekker, New York (1971)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • José L. Galán-García
    • 1
    Email author
  • Gabriel Aguilera-Venegas
    • 1
  • María Á. Galán-García
    • 1
  • Pedro Rodríguez-Cielos
    • 1
  • Iván Atencia-McKillop
    • 1
  • Yolanda Padilla-Domínguez
    • 1
  • Ricardo Rodríguez-Cielos
    • 2
  1. 1.Departamento de Matemática Aplicada, Escuela de Ingenierías IndustrialesUniversity of MálagaMálagaSpain
  2. 2.Departamento de Señales, Sistemas y Radiocomunicaciones. ETSI de Telecomunicación, Universidad Politécnica de MadridUniversity of MadridMadridSpain

Personalised recommendations