Hermite subdivision on manifolds via parallel transport


We propose a new adaption of linear Hermite subdivision schemes to the manifold setting. Our construction is intrinsic, as it is based solely on geodesics and on the parallel transport operator of the manifold. The resulting nonlinear Hermite subdivision schemes are analyzed with respect to convergence and C 1 smoothness. Similar to previous work on manifold-valued subdivision, this analysis is carried out by proving that a so-called proximity condition is fulfilled. This condition allows to conclude convergence and smoothness properties of the manifold-valued scheme from its linear counterpart, provided that the input data are dense enough. Therefore the main part of this paper is concerned with showing that our nonlinear Hermite scheme is “close enough”, i.e., in proximity, to the linear scheme it is derived from.


  1. 1.

    do Carmo, M.P.: Riemannian Geometry. Birkhäuser Verlag (1992)

  2. 2.

    Conti, C., Merrien, J.L., Romani, L.: Dual Hermite subdivision schemes of de Rham-type. BIT Numer. Math. 54, 955–977 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  3. 3.

    Dubuc, S.: Scalar and Hermite subdivision schemes. Appl. Comput. Harmon. Anal. 21(3), 376–394 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. 4.

    Dubuc, S., Merrien, J.L.: Convergent vector and Hermite subdivision schemes. Constr. Approx. 23(1), 1–22 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. 5.

    Dubuc, S., Merrien, J.L. Approximation Theory XII. In: Neamtu, M., Schumaker, L.L. (eds.): De Rham transform of a Hermite subdivision scheme, pp. 121–132. Nashboro Press, Nashville, TN (2008)

    Google Scholar 

  6. 6.

    Dubuc, S., Merrien, J.L.: Hermite subdivision schemes and Taylor polynomials. Constr. Approx. 29(2), 219–245 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. 7.

    Dyn, N., Levin, D.: Approximation Theory VIII. Vol 2: Wavelets and Multilevel Approximation. In: Chui, C.K., Schumaker, L.L. (eds.): Analysis of hermite-type subdivision schemes, pp. 117–124. World Sci., River Edge, NJ (1995)

    Google Scholar 

  8. 8.

    Dyn, N., Levin, D.: Spline Functions and the Theory of Wavelets. In: Dubuc, S., Deslauriers, G (eds.) : Analysis of Hermite-interpolatory subdivision schemes, pp. 105–113. Amer. Math. Soc., Providence, RI (1999)

    Google Scholar 

  9. 9.

    Grohs, P.: A general proximity analysis of nonlinear subdivision schemes. SIAM J. Math. Anal. 42(2), 729–750 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. 10.

    Han, B., Yu, T., Xue, Y.: Noninterpolatory Hermite subdivision schemes. Math. Comput. 74(251), 1345–1367 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. 11.

    Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press (1979)

  12. 12.

    Kobayashi, S., Nomizu, K.: Foundations of differential geometry, vol. 2. Wiley (1969)

  13. 13.

    Merrien, J.L.: A family of Hermite interpolants by bisection algorithms. Numer. Algorithms 2(2), 187–200 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. 14.

    Merrien, J.L., Sauer, T.: From Hermite to stationary subdivision schemes in one and several variables. Adv. Comput. Math. 36(4), 547–579 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. 15.

    Moosmüller, C.: C 1 analysis of Hermite subdivision schemes on manifolds. SIAM J. Numer. Anal. 54(5), 3003–3031 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  16. 16.

    Onishchik, A.L., Vinberg, E.B.: Lie Groups and Lie Algebras I: Foundations of Lie Theory. Springer (1993)

  17. 17.

    Postnikov, M.M.: Geometry VI: Riemannian Geometry. Springer (2001)

  18. 18.

    Wallner, J.: Smoothness analysis of subdivision schemes by proximity. Constr. Approx. 24, 289–318 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. 19.

    Wallner, J., Dyn, N.: Convergence and C 1 analysis of subdivision schemes on manifolds by proximity. Comput. Aided Geom. Des. 22(7), 593–622 (2005)

    Article  MATH  Google Scholar 

  20. 20.

    Wallner, J., Nava Yazdani, E., Weinmann, A.: Convergence and smoothness analysis of subdivision rules in Riemannian and symmetric spaces. Adv. Comput. Math. 34(2), 201–218 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. 21.

    Xie, G., Yu, T.: Smoothness equivalence properties of general manifold-valued data subdivision schemes. SIAM Journal on Multiscale Modeling & Simulation 7(3), 1073–1100 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references


Open access funding provided by Graz University of Technology. The author would like to thank Johannes Wallner for helpful discussions on earlier versions of this paper and gratefully acknowledges the suggestions of the anonymous reviewers.

Author information



Corresponding author

Correspondence to Caroline Moosmüller.

Additional information

The author gratefully acknowledges support by the doctoral program “Discrete Mathematics”, funded by the Austrian Science Fund FWF under grant agreement W1230.

Communicated by: Tomas Sauer

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moosmüller, C. Hermite subdivision on manifolds via parallel transport. Adv Comput Math 43, 1059–1074 (2017). https://doi.org/10.1007/s10444-017-9516-1

Download citation


  • Hermite subdivision
  • Manifolds subdivision
  • C 1 analysis
  • Proximity

Mathematics Subject Classification (2010)

  • 41A25
  • 65D17
  • 53A99