Advertisement

Advances in Computational Mathematics

, Volume 43, Issue 1, pp 195–234 | Cite as

Error estimation for quadrature by expansion in layer potential evaluation

Open Access
Article

Abstract

In boundary integral methods it is often necessary to evaluate layer potentials on or close to the boundary, where the underlying integral is difficult to evaluate numerically. Quadrature by expansion (QBX) is a new method for dealing with such integrals, and it is based on forming a local expansion of the layer potential close to the boundary. In doing so, one introduces a new quadrature error due to nearly singular integration in the evaluation of expansion coefficients. Using a method based on contour integration and calculus of residues, the quadrature error of nearly singular integrals can be accurately estimated. This makes it possible to derive accurate estimates for the quadrature errors related to QBX, when applied to layer potentials in two and three dimensions. As examples we derive estimates for the Laplace and Helmholtz single layer potentials. These results can be used for parameter selection in practical applications.

Keywords

Nearly singular Quadrature Layer potential Error estimate 

Mathematics Subject Classification (2010)

65D30 65D32 65G99 

References

  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions, 10 edn. U.S. Govt. Print Off, Washington (1972)MATHGoogle Scholar
  2. 2.
    Barnett, A.H.: Evaluation of layer potentials close to the boundary for laplace and Helmholtz problems on analytic planar domains. SIAM J. Sci. Comput. 36(2), A427–A451 (2014). doi: 10.1137/120900253 MathSciNetCrossRefGoogle Scholar
  3. 3.
    Barrett, W.: Convergence properties of Gaussian quadrature formulae. Comput. J. 3(4), 272–277 (1961). doi: 10.1093/comjnl/3.4.272 MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Brass, H., Fischer, J.W., Petras, K.: The Gaussian quadrature method. Abh. Braunschweig. Wiss. Ges. 47, 115–150 (1996)MathSciNetMATHGoogle Scholar
  5. 5.
    Brass, H., Petras, K.: Quadrature theory. In: Mathematical Surveys and Monographs, vol. 178. American Mathematical Society, Providence (2011),  10.1090/surv/178
  6. 6.
    Donaldson, J.D., Elliott, D.: A unified approach to quadrature rules with asymptotic estimates of their remainders. SIAM J. Numer. Anal. 9(4), 573–602 (1972). doi: 10.1137/0709051 MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Elliott, D., Johnston, B.M., Johnston, P.R.: Clenshaw-Curtis and Gauss-Legendre quadrature for certain boundary element integrals. SIAM J. Sci. Comput. 31(1), 510–530 (2008). doi: 10.1137/07070200X MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Epstein, C.L., Greengard, L., Klöckner, A.: On the convergence of local expansions of layer potentials. SIAM J. Numer. Anal. 51(5), 2660–2679 (2013). doi: 10.1137/120902859 MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Greengard, L., Rokhlin, V.: A new version of the fast multipole method for the laplace equation in three dimensions. Acta Numer. 6, 229 (1997). doi: 10.1017/S0962492900002725 MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Helsing, J., Ojala, R.: On the evaluation of layer potentials close to their sources. J. Comput. Phys. 227(5), 2899–2921 (2008). doi: 10.1016/j.jcp.2007.11.024 MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Klöckner, A., Barnett, A., Greengard, L., O’Neil, M.: Quadrature by expansion: A new method for the evaluation of layer potentials. J. Comput. Phys. 252, 332–349 (2013). doi: 10.1016/j.jcp.2013.06.027 MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    NIST: Digital Library of Mathematical Functions. Release 1.0.10 of 2015-08-07. http://dlmf.nist.gov/
  13. 13.
    Rachh, M., Klöckner, A., O’Neil, M.: Fast algorithms for Quadrature by Expansion I: Globally valid expansions. arXiv:1602.05301v1[math.NA] (2016)
  14. 14.
    Tlupova, S., Beale, J.T.: Nearly singular integrals in 3D stokes flow. Commun. Comput. Phys. 14(5), 1207–1227 (2013). doi: 10.4208/cicp.020812.080213a MathSciNetCrossRefGoogle Scholar
  15. 15.
    Trefethen, L.N., Weideman, J.A.C.: The exponentially convergent trapezoidal rule. SIAM Rev. 56(3), 385–458 (2014). doi: 10.1137/130932132 MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Numerical Analysis, Department of MathematicsKTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations