Advances in Computational Mathematics

, Volume 43, Issue 1, pp 101–112 | Cite as

A parameter choice strategy for the inversion of multiple observations

  • Christian Gerhards
  • Sergiy PereverzyevJr.
  • Pavlo Tkachenko


In many geoscientific applications, multiple noisy observations of different origin need to be combined to improve the reconstruction of a common underlying quantity. This naturally leads to multi-parameter models for which adequate strategies are required to choose a set of ‘good’ parameters. In this study, we present a fairly general method for choosing such a set of parameters, provided that discrete direct, but maybe noisy, measurements of the underlying quantity are included in the observation data, and the inner product of the reconstruction space can be accurately estimated by the inner product of the discretization space. Then the proposed parameter choice method gives an accuracy that only by an absolute constant multiplier differs from the noise level and the accuracy of the best approximant in the reconstruction and in the discretization spaces.


Parameter choice Multiple observations Spherical approximation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bauer, F., Gutting, M., Lukas, M.A.: Evaluation of parameter choice methods for regularization of ill-posed problems in geomathematics. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics. 2nd edn. Springer (2015)Google Scholar
  2. 2.
    Bauer, F., Lukas, M.A.: Comparing parameter choice methods for regularization of ill-posed problems. Math. Comp. 81, 1795–1841 (2011)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Brezinski, C., Redivo-Zaglia, M., Rodriguez, G., Seatzu, S.: Multi-parameter regularization techniques for ill-conditioned linear systems. Num. Math. 94, 203–228 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
  5. 5.
    Chen, J., Pereverzyev, S. Jr., Xu, Y.: Aggregation of regularized solutions from multiple observation models. Inverse Prob. 31, 075005 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Drinkwater, M.R., Floberghagen, R., Haagmans, R., Muzi, D., Popescu, A.: GOCE: ESA’s first Earth explorer core mission. In: Beutler, G.B., Drinkwater, M.R., Rummel, R., Von Steiger, R. (eds.) Earth Gravity Field from Space - from Sensors to Earth Sciences. Kluwer Academic Publishers (2003)Google Scholar
  7. 7.
    Driscoll, J.R., Healy, M. H. Jr.: Computing fourier transforms and convolutions on the 2-sphere. Adv. Appl. Math. 15, 202–250 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Freeden, W.: On approximation by harmonic splines. Manuscr. Geod. 6, 193–244 (1981)zbMATHGoogle Scholar
  9. 9.
    Freeden, W.: Multiscale modelling of spaceborne geodata (1999)Google Scholar
  10. 10.
    Friis-Christensen, E., Lühr, H., Hulot, G.: Swarm: A constellation to study the Earth’s magnetic field. Earth Planet. Space 58, 351–358 (2006)CrossRefGoogle Scholar
  11. 11.
    Gerhards, C.: A combination of downward continuation and local approximation for harmonic potentials. Inverse Prob. 30, 085004 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
  13. 13.
    Haines, G.V.: Spherical cap harmonic analysis. J. Geophys. Res. 90, 2583–2591 (1985)CrossRefGoogle Scholar
  14. 14.
    Hesse, K., Sloan, I., Womersley, R.S.: Numerical integration on the sphere. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics. Springer (2010)Google Scholar
  15. 15.
    Hesse, K., Womersley, R.S.: Numerical integration with polynomial exactness over a spherical cap. Adv. Comp. Math. 36, 451–483 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Koch, K.R., Kusche, J.: Regularization of geopotential determination from satellite data by variance components. J. Geod. 76, 259–268 (2002)CrossRefzbMATHGoogle Scholar
  17. 17.
    Lu, S., Pereverzyev, S.: Multi-parameter regularization and its numerical realization. Num. Math. 118, 1–31 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lu, S., Pereverzyev, S.: Multiparameter regularization in downward continuation of satellite data. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics. 2nd edn. Springer (2015)Google Scholar
  19. 19.
    Merrick, J.R.: Aggregation of forecasts from multiple simulation models. In: Pasupathy, R., Kim, S.-H., Tolk, A., Hill, R., Kuhl, M.E. (eds.) Proceedings of the 2013 Winter Simulation Conference (2013)Google Scholar
  20. 20.
    Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K.: The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res. 117, B04406 (2012)Google Scholar
  21. 21.
    Pereverzyev, S., Schock, E.: Error estimates for band-limited spherical regularization wavelets in an inverse problem of satellite geodesy. Inverse Probl. 15, 881–890 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Pilkington, M.: Aeromagnetic surveying. In: Gubbins, D., Herrero-Bervera, E. (eds.) Encyclopedia of Geomagnetism and Paleomagnetism. Springer (2007)Google Scholar
  23. 23.
    Shure, L., Parker, R.L., Backus, G.E.: Harmonic splines for geomagnetic modeling. Phys. Earth Planet. Inter. 28, 215–229 (1982)CrossRefGoogle Scholar
  24. 24.
    Simons, F.J., Dahlen, F.A., Wieczorek, M.A.: Spatiospectral localization on a sphere. SIAM Rev. 48, 505–536 (2006)CrossRefzbMATHGoogle Scholar
  25. 25.
    Thébault, E., Schott, J.J., Mandea, M.: Revised spherical cap harmonic analysis (RSCHA): validation and properties. J. Geophys. Res. 111, B01102 (2006)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Christian Gerhards
    • 1
  • Sergiy PereverzyevJr.
    • 2
  • Pavlo Tkachenko
    • 3
  1. 1.Computational Science CenterUniversity of ViennaViennaAustria
  2. 2.Department of MathematicsUniversity of InnsbruckInnsbruckAustria
  3. 3.Johann Radon Institute for Computational and Applied MathematicsAustrian Academy of SciencesLinzAustria

Personalised recommendations