Advertisement

Advances in Computational Mathematics

, Volume 43, Issue 1, pp 45–76 | Cite as

An improved sweeping domain decomposition preconditioner for the Helmholtz equation

  • Christiaan C. StolkEmail author
Open Access
Article

Abstract

In this paper we generalize and improve a recently developed domain decomposition preconditioner for the iterative solution of discretized Helmholtz equations. We introduce an improved method for transmission at the internal boundaries using perfectly matched layers. Simultaneous forward and backward sweeps are introduced, thereby improving the possibilities for parallellization. Finally, the method is combined with an outer two-grid iteration. The method is studied theoretically and with numerical examples. It is shown that the modifications lead to substantial decreases in computation time and memory use, so that computation times become comparable to that of the fastests methods currently in the literature for problems with up to 108 degrees of freedom.

Keywords

Helmholtz equation Domain decomposition Multigrid method High-frequency waves Perfectly matched layers 

Mathematics Subject Classification (2010)

65N55 65N22 

References

  1. 1.
    Amestoy, P.R., Duff, I.S., Koster, J., L’Excellent, J.-Y.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Babuška, I., Ihlenburg, F., Paik, E.T., Sauter, S.A.: A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution. Comput. Methods Appl. Mech Eng. 128(3-4), 325–359 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Calandra, H., Gratton, S., Pinel, X., Vasseur, X.: An improved two-grid preconditioner for the solution of three-dimensional Helmholtz problems in heterogeneous media. Numer. Linear Algebra Appl. 20(4), 663–688 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, Z., Xiang, X.: A source transfer domain decomposition method for Helmholtz equations in unbounded domain. SIAM J. Numer. Anal. 51(4), 2331–2356 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Engquist, B., Ying, L.: Sweeping preconditioner for the Helmholtz equation: moving perfectly matched layers. Multiscale Model Simul. 9(2), 686–710 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Erlangga, Y. A.: Advances in iterative methods and preconditioners for the Helmholtz equation. Arch. Comput. Methods Eng. 15(1), 37–66 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ernst, O.G., Gander, M.J.: Why it is difficult to solve Helmholtz problems with classical iterative methods. In: Graham, I., Hou, T., Lakkis, O., Scheichl, R. (eds.) Numerical Analysis of Multiscale Problems. Springer (2011)Google Scholar
  8. 8.
    Gander, M.J., Halpern, L., Magoulès, F.: An optimized Schwarz method with two-sided Robin transmission conditions for the Helmholtz equation. Internat. J. Numer. Methods Fluids 55(2), 163–175 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    George, A.: Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 10, 345–363 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Jo, C.-H., Shin, C., Suh, J.H.: An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator. Geophysics 61(2), 529–537 (1996)CrossRefGoogle Scholar
  11. 11.
    Johnson, S.G.: Notes on perfectly matched layers. http://math.mit.edu/stevenj/18.369/pml.pdf (2010)
  12. 12.
    Poulson, J., Engquist, B., Li, S., Ying, L.: A parallel sweeping preconditioner for heterogeneous 3D Helmholtz equations. SIAM J. Sci Comput. 35 (3), C194–C212 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Riyanti, C., Kononov, A., Erlangga, Y., Vuik, C., Oosterlee, C., Plessix, R.-E., Mulder, W.: A parallel multigrid-based preconditioner for the 3D heterogeneous high-frequency Helmholtz equation. J. Comput. Phys. 224(1), 431 – 448 (2007). Special Issue Dedicated to Professor Piet Wesseling on the occasion of his retirement from Delft University of TechnologyMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Schädle, A., Zschiedrich, L., Burger, S., Klose, R., Schmidt, F.: Domain decomposition method for Maxwell’s equations: scattering off periodic structures. J. Comput. Phys. 226(1), 477–493 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Stolk, C.C.: A rapidly converging domain decomposition method for the Helmholtz equation. J. Comput. Phys. 241, 240–252 (2013)CrossRefGoogle Scholar
  16. 16.
    Stolk, C.C.: A dispersion minimizing scheme for the 3-D Helmholtz equation based on ray theory. J. Comput. Phys. 314, 618–646 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Stolk, C.C., Ahmed, M., Bhowmik, S.K.: A multigrid method for the Helmholtz equation with optimized coarse grid corrections. SIAM J. Sci. Comput. 36(6), A2819–A2841 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Academic Press Inc., San Diego, CA (2001). With contributions by A. Brandt, P. Oswald and K. StübenzbMATHGoogle Scholar
  19. 19.
    Turkel, E., Gordon, D., Gordon, R., Tsynkov, S.: Compact 2D and 3D sixth order schemes for the Helmholtz equation with variable wave number. J. Comput. Phys. 232(1), 272–287 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Vion, A.: Multi-domain approaches for the solution of high-frequency time-harmonic propagation problems, PhD Thesis, Université de Liège (2014)Google Scholar
  21. 21.
    Vion, A., Geuzaine, C.: Double sweep preconditioner for optimized schwarz methods applied to the Helmholtz problem. J. Comput. Phys. 266(0), 171–190 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Wang, S., De Hoop, M.V., Xia, J.: On 3D modeling of seismic wave propagation via a structured parallel multifrontal direct Helmholtz solver. Geophys. Prospect. 59, 857–873 (2011)CrossRefGoogle Scholar
  23. 23.
    Zepeda-Núnez, L., Demanet, L.: The method of polarized traces for the 2D Helmholtz equation. J. Comput. Phys. 308, 347–388 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Korteweg-de Vries Institute for MathematicsUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations