Advances in Computational Mathematics

, Volume 42, Issue 4, pp 823–842 | Cite as

Collocation with WEB–Splines

  • Christian Apprich
  • Klaus Höllig
  • Jörg Hörner
  • Ulrich Reif
Article

Abstract

We describe a collocation method with weighted extended B–splines (WEB–splines) for arbitrary bounded multidimensional domains, considering Poisson’s equation as a typical model problem. By slightly modifying the B–spline classification for the WEB–basis, the centers of the supports of inner B–splines can be used as collocation points. This resolves the mismatch between the number of basis functions and interpolation conditions, already present in classical univariate schemes, in a simple fashion. Collocation with WEB–splines is particularly easy to implement when the domain boundary can be represented as zero set of a weight function; sample programs are provided on the website http://www.web-spline.de. In contrast to standard finite element methods, no mesh generation and numerical integration is required, regardless of the geometric shape of the domain. As a consequence, the system equations can be compiled very efficiently. Moreover, numerical tests confirm that increasing the B–spline degree yields highly accurate approximations already on relatively coarse grids. Compared with Ritz-Galerkin methods, the observed convergence rates are decreased by 1 or 2 when using splines of odd or even order, respectively. This drawback, however, is outweighed by a substantially smaller bandwidth of collocation matrices.

Keywords

Collocation WEB–spline Boundary value problem Interpolation 

Mathematics Subject Classification (2010)

65L60 65D07 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apprich, C., Höllig, K., Hörner, J., Keller, A., Nava–Yazdani, E.: Finite element approximation with hierarchical B–splines In: Boissonnat, J.D., et al. (eds.) Curves and Surfaces 2014, LNCS 9213, pp 1–15. Springer (2015)Google Scholar
  2. 2.
    Auricchio, F., Beirão da Veiga, L., Hughes, T.J.R., Reali, A., Sangalli, G.: Isogeometric collocation methods. Math. Mod. Meth. Appl. Sci. 20, 2075–2107 (2010)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Auricchio, F., Beirão da Veiga, L., Hughes, T.J.R., Reali, A., Sangalli, G.: Isogeometric collocation for elastostatics and explicit dynamics. Comput. Methods Appl. Mech. Engrg. 249/252, 2–14 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bajaj, C., Bettadapura, R., Lei, N., Mollere, A., Peng, C., Rand, A.: Constructing A-spline weight functions for Stable WEB–spline finite element methods. In: Proc. ACM Symposium on Solid and Physical Modeling, SPM 2010, G. Elber et al. (eds.), ACM (2010), 153–158Google Scholar
  5. 5.
    van Blerk, J.J., Botha, J.F.: Numerical solution of partial differential equations on curved domains by collocation, Numer. Methods Partial Differential Equations 9, 357–371 (1993)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    de Boor, C.: The method of projections as applied to the numerical solution of two point boundary value problems using cubic splines. Dissertation, University of Michigan (1966)Google Scholar
  7. 7.
    de Boor, C.: On Calculating with B–Splines. J. Approx. Theory 6, 50–62 (1972)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    de Boor, C.: A Practical Guide to Splines. Springer-Verlag, New York (1978)CrossRefMATHGoogle Scholar
  9. 9.
    de Boor, C, Swartz, B.: Collocation at Gaussian Points. SIAM J. Numer. Anal. 10, 582–606 (1973)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Cavendish, J.C.: A collocation method for elliptic and parabolic boundary–value problems using cubic splines. Dissertation, University of Pittsburgh (1972)Google Scholar
  11. 11.
    Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley (2009)Google Scholar
  12. 12.
    Dokken, T., Lyche, T., Pettersen, K.F.: Polynomial splines over locally refined box-partitions. Comput. Aided Geom. Design 30, 331–356 (2013)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Fraser, R.A., Jones, W.N.P., Skan, S.W.: Approximations to functions and to the solutions of differential equations. GB Aeronautical Research Committee, ARC Technical Report (1937)MATHGoogle Scholar
  14. 14.
    Groisser, D., Peters, J.: Matched G k-constructions always yield C k-continuous isogeometric elements. Comput. Aided Geom. Design 34, 67–72 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Höllig, K.: Finite Element Methods with B–Splines. SIAM (2003)Google Scholar
  16. 16.
    Höllig, K., Hörner, J.: Approximation and Modeling with B–Splines. SIAM (2013)Google Scholar
  17. 17.
    Höllig, K., Hörner, J.: Programming Finite Element Methods with B–Splines. Comput. Math. Appl. 70, 1441–1456 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Höllig, K., Hörner, J., Hoffacker, A.: Finite element analysis with B–splines: weighted and isogeometric methods. In: Boissonnat, J.D, et al. (eds.) Curves and Surfaces 2010, LNCS 6920, pp 330–350. Springer (2012)Google Scholar
  19. 19.
    Höllig, K., Reif, U., Wipper, J.: Weighted extended B–spline approximation of Dirichlet problems. SIAM J. Numer. Anal. 39, 442–462 (2001)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Engrg. 194, 4135–4195 (2005)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Ito, T.: A collocation method for boundary–value problems using spline functions. Dissertation, Brown University (1972)Google Scholar
  22. 22.
    Kantorovich, L.V.: Sur une méthode de resolution approchée d’equations differentielles aux derivées partielles. C. R. Acad. Sci. URSS 2, 534–536 (1934)MATHGoogle Scholar
  23. 23.
    Kantorovich, L.V., Krylov, V.I.: Approximate Methods of Higher Analysis. Interscience Publishers (1958)Google Scholar
  24. 24.
    Karpilovskaya, E.B.: On convergence of an interpolation method for ordinary differential equations (Russian). Uspekhi Mat. Nauk. 8, 111–118 (1953)MathSciNetGoogle Scholar
  25. 25.
    Kraft, R.: Adaptive und linear unabhängige Multilevel B–Splines und ihre Anwendungen. Dissertation, University of Stuttgart (1998)Google Scholar
  26. 26.
    Mokris, D., Jüttler, B.: TDHB–splines: The truncated decoupled basis of hierarchical tensor–product splines. CAGD 31, 531–544 (2014)MathSciNetGoogle Scholar
  27. 27.
    Percell, P., Wheeler, M.F.: A C 1 finite element collocation method for elliptic equations. SIAM J. Numer. Anal. 17, 605–622 (1980)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Piegl, L., Tiller, W.: The NURBS Book. Springer (1997)Google Scholar
  29. 29.
    Prenter, P.M., Russell, R.D.: Orthogonal collocation for elliptic partial differential equations. SIAM J. Numer. Anal. 13, 923–939 (1976)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Russel, R. D., Shampine, L.F.: A collocation method for boundary value problems, Numer. Math. 19, 1–28 (1972)MathSciNetGoogle Scholar
  31. 31.
    Rvachev, V.L.: Method of R-functions in boundary-value problems. Int. Appl. Mech. 11, 345–354 (1975)MathSciNetMATHGoogle Scholar
  32. 32.
    Rvachev, V.L., Sheiko, T.I.: R-functions in boundary value problems in mechanics. Appl. Mech. Rev. 48, 151–188 (1995)CrossRefGoogle Scholar
  33. 33.
    Rvachev, V.L., Sheiko, T.I., Shapiro, V., Tsukanov, I.: On completeness of RFM solution structures. Comput. Mech. 25, 305–316 (2000)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Schillinger, D., Evans, J.A., Reali, A., Scott, M.A., Hughes, T.J.R.: Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations. Comput. Meth. Appl. Mech. Engrg. 267, 170–232 (2013)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Schumaker, L.L.: Spline Functions: Basic Theory. Wiley (1980)Google Scholar
  36. 36.
    Shapiro, V.: Semi–analytic geometry with R–functions. Acta Numer. 16, 239–303 (2007)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Vainikko, G.M.: On convergence and stability of the collocation method. Diff. Equ. 1, 186–194 (1965)MathSciNetMATHGoogle Scholar
  38. 38.
    Wright, K.: Chebyshev collocation methods for ordinary differential equations. Comput. J. 6, 358–365 (1963/1964)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Christian Apprich
    • 1
  • Klaus Höllig
    • 1
  • Jörg Hörner
    • 1
  • Ulrich Reif
    • 2
  1. 1.IMNGFachbereich Mathematik, Universität StuttgartStuttgartGermany
  2. 2.AG Geometrie & ApproximationTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations