Advances in Computational Mathematics

, Volume 42, Issue 3, pp 651–674 | Cite as

Relation between total variation and persistence distance and its application in signal processing

  • Gerlind PlonkaEmail author
  • Yi Zheng


In this paper we establish the new notion of persistence distance for discrete signals and study its main properties. The idea of persistence distance is based on recent developments in topological persistence for assessment and simplification of topological features of data sets. Particularly, we establish a close relationship between persistence distance and discrete total variation for finite signals. This relationship allows us to propose a new adaptive denoising method based on persistence that can also be regarded as a nonlinear weighted ROF model. Numerical experiments illustrate the ability of the new persistence based denoising method to preserve significant extrema of the original signal.


Discrete total variation Persistence homology Persistence pairs Persistence distance 

Mathematics Subject Classifications (2010)

41A15 49M25 57M50 65D10 65D18 94A12 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Almansa, A., Ballester, C., Caselles, V., Haro, G.: A TV based restoration model with local constraints. J. Sci. Comput. 34(3), 209–236 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bauer, U., Lange, C., Wardetzky, M.: Optimal topological simplification of discrete functions on surfaces. Discret. Comput. Geom. 47(2), 347–377 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bauer, U., Schönlieb, C.-B., Wardetzky, M.: Total variation meets topological persistence: a first encounter. AIP Conf. Proc. 1281, 1022 (2010)CrossRefGoogle Scholar
  4. 4.
    Bertrand, G.: On topological watersheds. J. Math. Imaging Vis. 22(2–3), 217–230 (2005)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Carlsson, G., Zomorodian, A., Collins, A., Guibas, L.: Persistence barcodes for shapes. In: Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 124–135 (2004)Google Scholar
  6. 6.
    Chambolle, A., Darbon, J.: On total variation minimization and surface evolution using parametric maximum flows. Int. J. Comput. Vis. 84, 288–307 (2009)CrossRefGoogle Scholar
  7. 7.
    Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chan, T.F., Osher, S., Shen, J.: The digital TV filter and nonlinear denoising. IEEE Trans. Image Process. 10(2), 231–241 (2001)CrossRefzbMATHGoogle Scholar
  9. 9.
    Chen, C., Edelsbrunner, H.: Diffusion runs low on persistence fast IEEE International Conference on Computer Vision (ICCV), pp. 423–430 (2011)Google Scholar
  10. 10.
    Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discret. Comput. Geom. 37, 103–120 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cohen-Steiner, D., Edelsbrunner, H., Harer, J., Mileyko, Y.: Lipschitz functions have L p-stable persistence. Found. Comput. Math. 10, 127–139 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dong, Y., Hintermüller, M., Monserrat Rincon-Camacho, M.: Automated regularization parameter selection in multi-scale total variation models for image restoration. J. Math. Imaging Vis. 40, 82–104 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discret. Comput. Geom. 28, 511–533 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Grasmair, M.: The equivalence of the taut string algorithm and BV-regularization. J. Math. Imaging Vision 27, 59–66 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Grasmair, M.: Locally adaptive total variation regularization, SSVM, Lecture Notes in Computer Science, vol. 5567, pp. 331–342. Springer, Berlin (2009)Google Scholar
  16. 16.
    Roerdink, J.B.T.M., Meijster, A.: The watershed transform: definitions, algorithms, and parallelization strategies. Fundam. Inform. 41, 187–228 (2000)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Strong, D.M., Aujol, J.-F., Chan, T.F.: Scale recognition, regularization parameter selection, and Meyer’s G norm in total variation regularization. Multiscale Model. Simul. 5(1), 273–303 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Strong, D.M., Chan, T.F.: Spatially and scale adaptive total variation based regularization and anisotropic diffusion in image processing. Diffusion in Image Processing, UCLA Math Department CAM Report 96-46 (1996)Google Scholar
  20. 20.
    Zomorodian, A., Carlsson, G.: Computing persistent homology. Discret. Comput. Geom. 33(2), 249–274 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute for Numerical and Applied MathematicsUniversity of GöttingenGöttingenGermany

Personalised recommendations