Advertisement

Advances in Computational Mathematics

, Volume 42, Issue 1, pp 227–248 | Cite as

The Ewald sums for singly, doubly and triply periodic electrostatic systems

  • Anna-Karin Tornberg
Article

Abstract

When evaluating the electrostatic potential, periodic boundary conditions in one, two or three of the spatial dimensions are often required for different applications. The triply periodic Ewald summation formula is classical, and Ewald summation formulas for the other two cases have also been derived. In this paper, derivations of the Ewald sums in the doubly and singly periodic cases are presented in a uniform framework based on Fourier analysis, which also yields a natural starting point for FFT-based fast summation methods.

Keywords

Electrostatic potential Periodicity Ewald summation 

Mathematics Subject Classification (2010)

65Z05 40C99 35J05 31C20 70E55 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramowitz, M., Stegun, I.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover (1970)Google Scholar
  2. 2.
    Bertaut, F.: L’energie électrostatique de réseaux ioniques. J. Phys. Radium 13, 499 (1952)CrossRefzbMATHGoogle Scholar
  3. 3.
    Darden, T., York, D., Pedersen, L.: Particle mesh Ewald: An O(N) log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089 (1993)CrossRefGoogle Scholar
  4. 4.
    de Leeuw, S.W., Perram, J.W.: Electrostatic lattice sums for semi-infinite lattices. Mol. Phys. 37, 1313–1322 (1979)CrossRefMathSciNetGoogle Scholar
  5. 5.
    de Leeuw, S.W., Perram, J.W., Smith, E.R.: Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constants, vol. 373, pp 27–56 (1980)Google Scholar
  6. 6.
    Deserno, M., Holm, C.: How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines. J. Chem. Phys., 7678–7693 (1998)Google Scholar
  7. 7.
    Essmann, U., Perera, L., Berkowitz, M., Darden, T., Lee, H., Pedersen, L.: A smooth particle mesh Ewald method. J. Chem. Phys., 103 (1995)Google Scholar
  8. 8.
    Ewald, P.: Die berechnung optischer und elektrostatischer gitterpotentiale. Ann. Phys. 64, 253–287 (1921)CrossRefzbMATHGoogle Scholar
  9. 9.
    Fripiat, J.G., Delhalle, J., Flamant, I., Harris, F.E.: Ewald-type formulas for Gaussian-basis Bloch states in one-dimensionally periodic systems. J. Chem. Phys. 132, 044108 (2010)CrossRefGoogle Scholar
  10. 10.
    Genovese, L., Deutsch, T., Goedecker, S.: Efficient and accurate three-dimensional Poisson solver for surface problems. J. Chem. Phys. 127, 054704 (2007)CrossRefGoogle Scholar
  11. 11.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of integrals, series, and products, 7th Edn. Academic (2007)Google Scholar
  12. 12.
    Grzybowski, A., Bródka, A.: Electrostatic interactions in molecular dynamics simulation of a three-dimensional system with periodicity in one direction. Mol. Phys. 100(5), 635–639 (2002)CrossRefGoogle Scholar
  13. 13.
    Grzybowski, A., Gwózdz, E., Bródka, A.: Ewald summation of electrostatic interactions in molecular dynamics of a three-dimensional system with periodicity in two directions. Phys. Rev. B 61, 6706–6712 (2000)CrossRefGoogle Scholar
  14. 14.
    Hockney, R.W., Eastwood, J.W.: Computer simulation using particles. Taylor & Francis Inc., Bristol (1988)CrossRefzbMATHGoogle Scholar
  15. 15.
    Lindbo, D., Tornberg, A.-K.: Spectral accuracy in fast Ewald-based methods for particle simulations. J. Comput. Phys. 230(24), 8744–8761 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Lindbo, D., Tornberg, A.-K.: Fast and spectrally accurate Ewald summation for 2-periodic electrostatic systems. J. Chem. Phys. 136, 164111 (2012)CrossRefGoogle Scholar
  17. 17.
    Nestler, F., Pippig, M., Potts, D.: Fast Ewald summation based on NFFT with mixed periodicity. J. Comput. Phys. 285, 280–315 (2015)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Parry, D.E.: The electrostatic potential in the surface region of an ionic crystal. Surf. Sci. 49, 433–440 (1975)CrossRefGoogle Scholar
  19. 19.
    Parry, D.E.: Errata; The electrostatic potential in the surface region of an ionic crystal. Surf. Sci. 54, 195–195 (1976)CrossRefGoogle Scholar
  20. 20.
    Perram, J.W., Petersen, H.G., De Leeuw, S.W.: An algorithm for the simulation of condensed matter which grows as the 3/2 power of the number of particles. Mol. Phys. 65, 875–893 (1988)CrossRefGoogle Scholar
  21. 21.
    Porto, M.: Ewald summation of electrostatic interactions of systems with finite extent in two of three dimensions. J. Phys. A: Math. Gen. (2000)Google Scholar
  22. 22.
    Pozrikidis, C.: Computation of periodic Green’s functions of Stokes flow. J. Eng. Math. 30, 79–96 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Smith, E.R.: Electrostatic potentials in systems periodic in one, two, and three dimensions. J. Chem. Phys. 128, 174104 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Numerical Analysis, Department of Mathematics/Swedish e-Science Research CentreRoyal Institute of Technology (KTH)StockholmSweden

Personalised recommendations