Advances in Computational Mathematics

, Volume 41, Issue 5, pp 1365–1389 | Cite as

Reduced models for sparse grid discretizations of the multi-asset Black-Scholes equation

  • Benjamin Peherstorfer
  • Pablo Gómez
  • Hans-Joachim Bungartz
Article
  • 189 Downloads

Abstract

This work presents reduced models for pricing basket options with the Black-Scholes and the Heston model. Basket options lead to multi-dimensional partial differential equations (PDEs) that quickly become computationally infeasible to discretize on full tensor grids. We therefore rely on sparse grid discretizations of the PDEs, which allow us to cope with the curse of dimensionality to some extent. We then derive reduced models with proper orthogonal decomposition. Our numerical results with the Black-Scholes model show that sufficiently accurate results are achieved while gaining speedups between 80 and 160 compared to the high-fidelity sparse grid model for 2-, 3-, and 4-asset options. For the Heston model, results are presented for a single-asset option that leads to a two-dimensional pricing problem, where we achieve significant speedups with our model reduction approach based on high-fidelity sparse grid models.

Keywords

Option pricing Proper orthogonal decomposition Sparse grids Black-Scholes equation 

Mathematics Subject Classifications (2010)

65M60 65N22 91G60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amsallem, D., Zahr, M., Farhat, C.: Nonlinear model order reduction based on local reduced-order bases. Int. J. Numer. Methods Eng. 92(10), 891–916 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81(3), 637–654 (1973)MATHCrossRefGoogle Scholar
  3. 3.
    Bui-Thanh, T., Willcox, K., Ghattas, O.: Model reduction for large-scale systems with high-dimensional parametric input space. SIAM J. Sci. Comput. 30(6), 3270–3288 (2008)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bungartz, H.J., Griebel, M.: A note on the complexity of solving Poisson’s equation for spaces of bounded mixed derivatives. J. Complex. 15(2), 167–199 (1999)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Bungartz, H.J., Griebel, M. Sparse grids. Acta Numerica 13, 1–123 (2004)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bungartz, H.J., Heinecke, A., Pfluger, D., Schraufstetter, S.: Option pricing with a direct adaptive sparse grid approach. J. Comput. Applied Math. 236(15), 3741–3750 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bungartz, H.J., Heinecke, A., Pflüger, D., Schraufstetter, S.: Parallelizing a Black-Scholes solver based on finite elements and sparse grids. Concurrency Comput. Practice Experience, 1640–1653 (2012)Google Scholar
  8. 8.
    Burkovska, O., Haasdonk, B., Salomon, J., Wohlmuth, B. (2014)Google Scholar
  9. 9.
    Cont, R., Lantos, N., Pironneau, O.: A reduced basis for option pricing. SIAM J. Financ. Math. 2(1), 287–316 (2011)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Falc, A., Chinesta, F., Gonzlez, M.: Model reduction methods in option pricing. Working Papers. Serie AD 2006-16, Instituto Valenciano de Investigaciones Econmicas, S.A. (Ivie). http://ideas.repec.org/p/ivi/wpasad/2006-16.html (2006)
  11. 11.
    Feuersänger, C.: Sparse grid methods for higher dimensional approximation. PhD thesis, Institut für Numerische Simulation, Universität Bonn (2010)Google Scholar
  12. 12.
    Garcke, J., Gerstner, T., Griebel, M.: Intraday foreign exchange rate forecasting using sparse grids. In: Garcke, J., Griebel, M. (eds.) Sparse Grids and Applications, Lecture Notes in Computational Science and Engineering, vol. 88, pp 81–105. Springer (2013)Google Scholar
  13. 13.
    Gerstner, T., Griebel, M.: Dimension-adaptive tensor-product quadrature. Computing 71(1), 65–87 (2003)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Giles, M.: Multi-level Monte Carlo path simulation. Oper. Res. 56(3), 607–617 (2008)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer (2004)Google Scholar
  16. 16.
    Griebel, M., Holtz, M.: Dimension-wise integration of high-dimensional functions with applications to finance. J. Complex. 26, 455–489 (2010)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Griebel, M., Hullmann, A.: An efficient sparse grid Galerkin approach for the numerical valuation of basket options under Kou’s jump-diffusion model. In: Sparse Grids and Applications, Lecture Notes in Computational Science and Engineering, pp. 121–150. Springer (2013)Google Scholar
  18. 18.
    Griebel, M., Schneider, M., Zenger, C.: A combination technique for the solution of sparse grid problems. In: de Groen, P., Beauwens, R. (eds.) Iterative Methods in Linear Algebra, pp 263–281. Elsevier (1992)Google Scholar
  19. 19.
    Guennebaud, G., Jacob, B., et al.: Eigen v3. http://eigen.tuxfamily.org (2010)
  20. 20.
    Haasdonk, B.: Convergence rates of the POD-Greedy method. M2AN Math. Model. Numer. Anal 47, 859–873 (2013)MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Haasdonk, B., Salomon, J., Wohlmuth, B.: A reduced basis method for the simulation of American options. In: ENUMATH 2012 (2012)Google Scholar
  22. 22.
    Heinecke, A., Schraufstetter, S., Bungartz, H.J.: A highly-parallel Black-Scholes solver based on adaptive sparse grids. Int. J. Comput. Math. 89(9), 1212–1238 (2012)MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Hepperger, P.: Option pricing in Hilbert space-valued jump-diffusion models using partial integro-differential equations. SIAM J. Finan. Math. 1(1), 454–489 (2010)MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Hesthaven, J.S., Stamm, B., Zhang, S.: Efficient greedy algorithms for high-dimensional parameter spaces with applications to empirical interpolation and reduced basis methods. ESAIM: Math. Model. Numer. Anal. 48, 259–283 (2014)MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Finan. Stud. 6, 327–343 (1993)CrossRefGoogle Scholar
  26. 26.
    Holtz, M.: Sparse grid quadrature in high dimensions with applications in finance and insurance. PhD thesis, Institut für Numerische Simulation, Universität Bonn (2008)Google Scholar
  27. 27.
    Jolliffe, I.: Principal Component Analysis. Springer (2002)Google Scholar
  28. 28.
    Kangro, R., Nicolaides, R.: Far field boundary conditions for Black-Scholes equations. SIAM J. Numer. Anal. 38(4), 1357–1368 (2000)MATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Kiesel, R., Rupp, A., Urban, K.: Valuation of structured financial products by adaptive multiwavelet methods in high dimensions, Tech. rep., University of Ulm (2013)Google Scholar
  30. 30.
    Leentvaar, C., Oosterlee, C.: On coordinate transformation and grid stretching for sparse grid pricing of basket options. J. Comput. Appl. Math. 222(1), 193–209 (2008)MATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Leentvaar, C.C.W.: Pricing multi-asset options with sparse grids, PhD thesis, TU Delft (2008)Google Scholar
  32. 32.
    Linde, G., Persson, J., Von Sydow, L.: A highly accurate adaptive finite difference solver for the Black-Scholes equation. Int. J. Comput. Math. 86(12), 2104–2121 (2008)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Lötstedt, P., Persson, J., von Sydow, L., Tysk, J.: Space time adaptive finite difference method for European multi-asset options. Comput. Math. Appl. 53(8), 1159–1180 (2007)MATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    Maurus, S.: A multi-dimensional PDE solver for option pricing based on the Heston model and sparse grids. Thesis (S.M.), Institut fur Informatik, Technische Universitat Munchen (2012)Google Scholar
  35. 35.
    Mayerhofer, A.: Urban, K. A reduced basis method for parabolic partial differential equations with parameter functions and application to option pricing. Submitted (2014)Google Scholar
  36. 36.
    Peherstorfer, B., Butnaru, D., Willcox, K., Bungartz, H.: Localized discrete empirical interpolation method. SIAM J. Sci. Comput. 36(1), A168—A192 (2014)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Peherstorfer, B., Kowitz, C., Pflüger, D., Bungartz, H.J.: Selected recent applications of sparse grids. Numer. Math. Theory Methods Appl. 8, 47–77 (2015)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Peherstorfer, B., Zimmer, S., Bungartz, H.J.: Model reduction with the reduced basis method and sparse grids. In: Sparse Grids and Applications. Springer (2013)Google Scholar
  39. 39.
    Pironneau, O.: Calibration of options on a reduced basis. J. Comput. Appl. Math. 232(1), 139–147 (2009)MATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    Pironneau, O.: Reduced basis for vanilla and basket options. Risk Decis. Anal. 2, 185–194 (2011)MathSciNetGoogle Scholar
  41. 41.
    Pironneau, O.: Proper orthogonal decomposition for pricing options 16(1) (2012)Google Scholar
  42. 42.
    Reisinger, C.: Analysis of linear difference schemes in the sparse grid combination technique. IMA J. Numer. Anal. 33(2), 544–581 (2013)MATHMathSciNetCrossRefGoogle Scholar
  43. 43.
    Reisinger, C., Wittum, G.: On multigrid for anisotropic equations and variational inequalities. Pricing multi-dimensional European and American options. Comput. Vis. Sci. 7(3–4), 189–197 (2004)MATHMathSciNetGoogle Scholar
  44. 44.
    Reisinger, C., Wittum, G.: Efficient hierarchical approximation of high-dimensional option pricing problems. SIAM J. Sci. Comput. 29(1), 440–458 (2007)MATHMathSciNetCrossRefGoogle Scholar
  45. 45.
    Rozza, G., Huynh, D., Patera, A.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Archives Comput. Methods Eng. 15(3), 1–47 (2007)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Sachs, E., Schu, M.: Reduced order models (POD) for calibration problems in finance. In: Numerical Mathematics and Advanced Applications, pp. 735–742. Springer (2008)Google Scholar
  47. 47.
    Schraufstetter, S.: A pricing framework for the efficient evaluation of financial derivatives based on Theta calculus and adaptive sparse grids. PhD thesis, Institut fur Informatik, Technische Universitat Munchen (2012)Google Scholar
  48. 48.
    Schröter, T., Monoyios, M., Rometsch, M., Urban, K.: Model uncertainty and the robustness of hedging models. Submitted (2012)Google Scholar
  49. 49.
    Sirovich, L.: Turbulence and the dynamics of coherent structures. Q. Appl. Math., 561–571 (1987)Google Scholar
  50. 50.
    Veroy, K., Patera, A.: Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: Rigorous reduced-basis a posteriori error bounds. Int. J. Numer. Methods Fluids 47(8–9), 773–788 (2005)MATHMathSciNetCrossRefGoogle Scholar
  51. 51.
    Wilmott, P., Dewynne, J., Howison, S.: Option Pricing: Mathematical Models and Computation. Oxford Financial Press (1994)Google Scholar
  52. 52.
    Yserentant, H.: Hierarchical bases give conjugate gradient type methods a multigrid speed of convergence. Appl. Math. Comput. 19(1-4), 347–358 (1986)MATHMathSciNetCrossRefGoogle Scholar
  53. 53.
    Zenger, C.: Sparse grids. In: Hackbusch, W. (ed.) Parallel Algorithms for Partial Differential Equations, Notes on Numerical Fluid Mechanics, vol. 31, pp. 241–251. Vieweg (1991)Google Scholar
  54. 54.
    Zhou, Y.B.: Model reduction for nonlinear dynamical systems with parametric uncertainties. Thesis (S.M.), Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics (2012)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Benjamin Peherstorfer
    • 1
  • Pablo Gómez
    • 2
  • Hans-Joachim Bungartz
    • 2
  1. 1.Department of Aeronautics and AstronauticsMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of InformaticsTechnische Universität MünchenGarchingGermany

Personalised recommendations