Advertisement

Advances in Computational Mathematics

, Volume 41, Issue 5, pp 1289–1319 | Cite as

A stabilized proper orthogonal decomposition reduced-order model for large scale quasigeostrophic ocean circulation

  • Omer San
  • Traian Iliescu
Article

Abstract

In this paper, a stabilized proper orthogonal decomposition (POD) reduced-order model (ROM) framework is developed for the barotropic vorticity equation. Two different closure ideas are utilized in order to model truncated modes in the ROMs. We apply the POD-ROMs to mid-latitude simplified oceanic basins, which are standard prototypes of more realistic large-scale ocean dynamics. Two closure schemes are used to model the effects of the discarded POD modes: a mode dependent eddy viscosity closure model and a Smagorinsky-type model. A sensitivity analysis with respect to the free eddy viscosity stabilization parameter is performed for various POD-ROMs with different numbers of POD modes. The POD-ROM results are validated against the Munk layer resolving direct numerical simulations using a fully conservative fourth-order Arakawa scheme. A comparison with the standard Galerkin POD-ROM without any stabilization or closure is also included in our investigation. For a four-gyre ocean circulation problem, the new POD-ROM closure models show significant improvements in accuracy over the standard Galerkin model. This first step in the numerical assessment of the POD-ROMs shows that they could represent a computationally efficient tool for large scale oceanic simulations over long time intervals.

Keywords

Proper orthogonal decomposition Reduced-order modeling Stabilization Eddy viscosity closure Barotropic vorticity equations Quasigeostrophic ocean model Double-gyre wind forcing Four-gyre ocean circulation 

Mathematic Subject Classifications (2010)

37N10 76M25 76F20 76D99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amsallem, D., Cortial, J., Carlberg, K., Farhat, C.: A method for interpolating on manifolds structural dynamics reduced-order models. Int. J. Numer. Methods Eng. 80(9), 1241–1258 (2009)zbMATHCrossRefGoogle Scholar
  2. 2.
    Amsallem, D., Farhat, C.: Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA J. 46(7), 1803–1813 (2008)CrossRefGoogle Scholar
  3. 3.
    Amsallem, D., Farhat, C.: Stabilization of projection-based reduced-order models. Int. J. Numer. Methods Eng. 91(4), 358–377 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammerling, S., McKenney, A., Sorensen, D.: LAPACK Users’ guide. SIAM (1999)Google Scholar
  5. 5.
    Arakawa, A.: Computational design for long-term numerical integration of the equations of fluid motion: two-dimensional incompressible flow. Part I. J. Comput. Phys. 1(1), 119–143 (1966)zbMATHCrossRefGoogle Scholar
  6. 6.
    Balajewicz, M.J., Dowell, E.H., Noack, B.R.: Low-dimensional modelling of high-Reynolds-number shear flows incorporating constraints from the Navier–Stokes equation. J. Fluid Mech. 729, 285–308 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Bergmann, M., Bruneau, C.H., Iollo, A.: Enablers for robust POD models. J. Comput. Phys. 228(2), 516–538 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Bergmann, M., Cordier, L.: Optimal control of the cylinder wake in the laminar regime by trust-region methods and POD reduced-order models. J. Comput. Phys. 227(16), 7813–7840 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Borggaard, J., Iliescu, T., Wang, Z.: Artificial viscosity proper orthogonal decomposition. Math. Comput. Model. 53(1), 269–279 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Briley, W.R.: A numerical study of laminar separation bubbles using the Navier–Stokes equations. J. Fluid Mech. 47(4), 713–736 (1971)zbMATHCrossRefGoogle Scholar
  11. 11.
    Bui-Thanh, T., Willcox, K., Ghattas, O.: Model reduction for large-scale systems with high-dimensional parametric input space. SIAM J. Sci. Comput. 30(6), 3270–3288 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Cao, Y., Zhu, J., Navon, I.M., Luo, Z.: A reduced-order approach to four-dimensional variational data assimilation using proper orthogonal decomposition. Int. J. Numer. Methods Fluids 53(10), 1571–1583 (2007)zbMATHCrossRefGoogle Scholar
  13. 13.
    Carlberg, K., Bou-Mosleh, C., Farhat, C.: Efficient non-linear model reduction via a least-squares Petrov–Galerkin projection and compressive tensor approximations. Int. J. Numer. Methods Eng. 86(2), 155–181 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Carlberg, K., Farhat, C.: A low-cost, goal-oriented “compact proper orthogonal decomposition” basis for model reduction of static systems. Int. J. Numer. Methods Eng. 86(3), 381–402 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Cazemier, W.: Proper orthogonal decomposition and low dimensional models for turbulent flows. Ph.D. thesis, Rijksuniversiteit Groningen (1997)Google Scholar
  16. 16.
    Chaturantabut, S., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32(5), 2737–2764 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Collatz, L.: The numerical treatment of differential equations. Springer (1960)Google Scholar
  18. 18.
    Couplet, M., Sagaut, P., Basdevant, C.: Intermodal energy transfers in a proper orthogonal decomposition–Galerkin representation of a turbulent separated flow. J. Fluid Mech. 491, 275–284 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Crommelin, D.T., Majda, A.J.: Strategies for model reduction: comparing different optimal bases. J. Atmos. Sci. 61, 2206–2217 (2004)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Cummins, P.F.: Inertial gyres in decaying and forced geostrophic turbulence. J. Mar. Res. 50(4), 545–566 (1992)CrossRefGoogle Scholar
  21. 21.
    Cushman-Roisin, B., Beckers, J.M.: Introduction to geophysical fluid dynamics: physical and numerical aspects. Academic Press (2011)Google Scholar
  22. 22.
    Daescu, D., Navon, I.: A dual-weighted approach to order reduction in 4DVAR data assimilation. Mon. Weather Rev. 136(3), 1026–1041 (2008)CrossRefGoogle Scholar
  23. 23.
    Daescu, D.N., Navon, I.: Efficiency of a POD–based reduced second-order adjoint model in 4D–Var data assimilation. Int. J. Numer. Methods Fluids 53(6), 985–1004 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Esfahanian, V., Ashrafi, K.: Equation-free/Galerkin-free reduced-order modeling of the shallow water equations based on proper orthogonal decomposition. J. Fluids Eng. 131(7) (2009)Google Scholar
  25. 25.
    Fox-Kemper, B.: Reevaluating the roles of eddies in multiple barotropic wind-driven gyres. J. Phys. Oceanogr. 35(7), 1263–1278 (2005)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Fukunaga, K., Koontz, W.L.: Application of the Karhunen–Loeve expansion to feature selection and ordering. IEEE Trans. Comput. 100(4), 311–318 (1970)CrossRefGoogle Scholar
  27. 27.
    Gill, A.E.: Atmosphere-ocean dynamics. Academic press (1982)Google Scholar
  28. 28.
    Gottlieb, S., Shu, C.W.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67(221), 73–85 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Greatbatch, R.J., Nadiga, B.: Four-gyre circulation in a barotropic model with double-gyre wind forcing. J. Phys. Oceanogr. 30(6), 1461–1471 (2000)CrossRefGoogle Scholar
  30. 30.
    Hay, A., Borggaard, J.T., Pelletier, D.: Local improvements to reduced-order models using sensitivity analysis of the proper orthogonal decomposition. J. Fluid Mech. 629, 41–72 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Hoffman, J.D., Frankel, S.: Numerical methods for engineers and scientists. CRC press (2001)Google Scholar
  32. 32.
    Holm, D.D., Nadiga, B.T.: Modeling mesoscale turbulence in the barotropic double-gyre circulation. J. Phys. Oceanogr. 33(11), 2355–2365 (2003)CrossRefGoogle Scholar
  33. 33.
    Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, coherent structures, dynamical systems and symmetry. Cambridge University Press (1998)Google Scholar
  34. 34.
    Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24, 417–441 (1933)CrossRefGoogle Scholar
  35. 35.
    Iollo, A., Lanteri, S., Désidéri, J.A.: Stability properties of POD–Galerkin approximations for the compressible Navier–Stokes equations. Theor. Comput. Fluid Dyn. 13(6), 377–396 (2000)zbMATHCrossRefGoogle Scholar
  36. 36.
    Ito, K., Ravindran, S.: A reduced-order method for simulation and control of fluid flows. J. Comput. Phys. 143(2), 403–425 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    Kalashnikova, I., Barone, M.F.: On the stability and convergence of a Galerkin reduced order model (ROM) of compressible flow with solid wall and far-field boundary treatment. Int. J. Numer. Methods Eng. 83(10), 1345–1375 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  38. 38.
    Kalb, V.L., Deane, A.E.: An intrinsic stabilization scheme for proper orthogonal decomposition based low-dimensional models. Phys. Fluids 19(054), 106 (2007)Google Scholar
  39. 39.
    Lassila, T., Manzoni, A., Quarteroni, A., Rozza, G.: Model order reduction in fluid dynamics: challenges and perspectives. In: Quarteroni, A., Rozza, G. (eds.) Reduced Order Methods for Modeling and Computational Reduction. Springer, Milano (2013)Google Scholar
  40. 40.
    Lilly, D.K.: On the computational stability of numerical solutions of time-dependent non-linear geophysical fluid dynamics problems. Mon. Weather Rev. 93(1), 11–25 (1965)CrossRefGoogle Scholar
  41. 41.
    McWilliams, J.C.: Fundamentals of geophysical fluid dynamics. Cambridge University Press (2006)Google Scholar
  42. 42.
    Nadiga, B.T., Margolin, L.G.: Dispersive-dissipative eddy parameterization in a barotropic model. J. Phys. Oceanogr. 31(8), 2525–2531 (2001)CrossRefGoogle Scholar
  43. 43.
    Noack, B.R., Afanasiev, K., Morzynski, M., Tadmor, G., Thiele, F.: A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497(1), 335–363 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  44. 44.
    Noack, B.R., Papas, P., Monkewitz, P.A.: Low-dimensional Galerkin model of a laminar shear-layer. Tech. Rep. 2002-01. École Polytechnique Fédérale de Lausanne (2002)Google Scholar
  45. 45.
    North, G.R.: Empirical orthogonal functions and normal modes. J. Atmos. Sci. 41(5), 879–887 (1984)CrossRefGoogle Scholar
  46. 46.
    Özgökmen, T.M., Chassignet, E.P.: Emergence of inertial gyres in a two-layer quasigeostrophic ocean model. J. Phys. Oceanogr. 28(3), 461–484 (1998)CrossRefGoogle Scholar
  47. 47.
    Pedlosky, J.: Geophysical fluid dynamics. Springer, New York and Berlin (1982)CrossRefGoogle Scholar
  48. 48.
    Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in FORTRAN. Cambridge University Press (1992)Google Scholar
  49. 49.
    Ravindran, S.: A reduced-order approach for optimal control of fluids using proper orthogonal decomposition. Int. J. Numer. Methods Fluids 34(5), 425–448 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  50. 50.
    Rempfer, D.: Koherente struturen und chaos beim laminar-turbulenten grenzschichtumschlag. Ph.D. thesis. University of Stuttgart (1991)Google Scholar
  51. 51.
    Rowley, C.W., Colonius, T., Murray, R.M.: Model reduction for compressible flows using POD and Galerkin projection. Physica D: Nonlinear Phenomena 189(1), 115–129 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  52. 52.
    Rowley, C.W., Williams, D.R.: Dynamics and control of high-Reynolds-number flow over open cavities. Ann. Rev. Fluid Mech. 38, 251–276 (2006)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Sagaut, P.: Large eddy simulation for incompressible flows. Springer (2006)Google Scholar
  54. 54.
    San, O., Iliescu, T.: Proper orthogonal decomposition closure models for fluid flows: Burgers equation. Int. J. Numer. Anal. Model. Ser. B 5(3), 217–237 (2014)MathSciNetGoogle Scholar
  55. 55.
    San, O., Staples, A.E.: High-order methods for decaying two-dimensional homogeneous isotropic turbulence. Comput. Fluids 63, 105–127 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  56. 56.
    San, O., Staples, A.E.: A coarse-grid projection method for accelerating incompressible flow computations. J. Comput. Phys. 233, 480–508 (2013)MathSciNetCrossRefGoogle Scholar
  57. 57.
    San, O., Staples, A.E., Iliescu, T.: Approximate deconvolution large eddy simulation of a stratified two-layer quasigeostrophic ocean model. Ocean Model. 63, 1–20 (2013)CrossRefGoogle Scholar
  58. 58.
    San, O., Staples, A.E., Wang, Z., Iliescu, T.: Approximate deconvolution large eddy simulation of a barotropic ocean circulation model. Ocean Model. 40(2), 120–132 (2011)CrossRefGoogle Scholar
  59. 59.
    Galán del Sastre, P., Bermejo, R.: Error estimates of proper orthogonal decomposition eigenvectors and Galerkin projection for a general dynamical system arising in fluid models. Numer. Math. 110(1), 49–81 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  60. 60.
    Schmidt, A., Potschka, A., Korkel, S., Bock, H.G.: Derivative-extended POD reduced-order modeling for parameter estimation. SIAM J. Sci. Comput. 35 (6), 2696–2717 (2013)MathSciNetCrossRefGoogle Scholar
  61. 61.
    Selten, F.M.: An efficient description of the dynamics of barotropic flow. J. Atmos. Sci. 52(7), 915–936 (1995)CrossRefGoogle Scholar
  62. 62.
    Sirovich, L.: Turbulence and the dynamics of coherent structures. I-Coherent structures. II-Symmetries and transformations. III-Dynamics and scaling. Q. Appl. Math. 45, 561–571 (1987)zbMATHMathSciNetGoogle Scholar
  63. 63.
    Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Weather Rev. 91(3), 99–164 (1963)CrossRefGoogle Scholar
  64. 64.
    Strikwerda, J.: Finite difference schemes and partial differential equations. Society for Industrial and Applied Mathematics (2007)Google Scholar
  65. 65.
    Tsukerman, I.: A class of difference schemes with flexible local approximation. J. Comput. Phys. 211(2), 659–699 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  66. 66.
    Ullmann, S., Lang, J.: A POD-Galerkin reduced model with updated coefficients for Smagorinsky LES. In: Pereira, J.C.F., Sequeira, A. (eds.) V European Conference on Computational Fluid Dynamics, ECCOMAS CFD, p 2010, Lisbon (2010)Google Scholar
  67. 67.
    Vallis, G.K.: Atmospheric and oceanic fluid dynamics: fundamentals and large-scale circulation. Cambridge University Press (2006)Google Scholar
  68. 68.
    Wang, Y., Zhang, J.: Sixth order compact scheme combined with multigrid method and extrapolation technique for 2D Poisson equation. J. Comput. Phys. 228 (1), 137–146 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  69. 69.
    Wang, Z.: Reduced-order modeling of complex engineering and geophysical flows: analysis and computations. Ph.D. thesis. Virginia Tech (2012)Google Scholar
  70. 70.
    Wang, Z., Akhtar, I., Borggaard, J., Iliescu, T.: Two-level discretizations of nonlinear closure models for proper orthogonal decomposition. J. Comput. Phys. 230(1), 126–146 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  71. 71.
    Wang, Z., Akhtar, I., Borggaard, J., Iliescu, T.: Proper orthogonal decomposition closure models for turbulent flows: a numerical comparison. Comput. Methods Appl. Mech. Eng. 237–240, 10–26 (2012)MathSciNetCrossRefGoogle Scholar
  72. 72.
    Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometr. Intell. Lab. Syst. 2(1), 37–52 (1987)CrossRefGoogle Scholar
  73. 73.
    Xiao, D., Fang, F., Buchan, A.G., Pain, C.C., Navon, I.M., Du, J., Hu, G.: Non-linear model reduction for the Navier–Stokes equations using residual DEIM method. J. Comput. Phys. 263, 1–18 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Interdisciplinary Center for Applied MathematicsVirginia TechBlacksburgUSA
  2. 2.Department of MathematicsVirginia TechBlacksburgUSA

Personalised recommendations