Advances in Computational Mathematics

, Volume 41, Issue 6, pp 1119–1144 | Cite as

Computing and analyzing recoverable supports for sparse reconstruction

Article

Abstract

Designing computational experiments involving 1 minimization with linear constraints in a finite-dimensional, real-valued space for receiving a sparse solution with a precise number k of nonzero entries is, in general, difficult. Several conditions were introduced which guarantee that, for example for small k or for certain matrices, simply placing entries with desired characteristics on a randomly chosen support will produce vectors which can be recovered by 1 minimization. In this work, we consider the case of large k and introduce a method which constructs vectors which support has the cardinality k and which can be recovered via 1 minimization. Especially, such vectors with largest possible support can be constructed. Further, we propose a methodology to quickly check whether a given vector is recoverable. This method can be cast as a linear program and we compare it with solving 1 minimization directly. Moreover, we gain new insights in the recoverability in a non-asymptotic regime. Our proposal for quickly checking vectors bases on optimality conditions for exact solutions of the 1 minimization. These conditions can be used to establish equivalence classes of recoverable vectors which have a support of the same cardinality. Further, by these conditions we deduce a geometrical interpretation which identifies an equivalence class with a face of an hypercube which is cut by a certain affine subspace. Due to the new geometrical interpretation we derive new results on the number of equivalence classes which are illustrated by computational experiments.

Keywords

Sparse recovery Hypercube sections Phase transition Compressed sensing 

Mathematics Subject Classification (2010)

52B05 94A12 15A29 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barnette, D.W.: The minimum number of vertices of a simple polytope. Israel J. Math. 10(1), 121–125 (1971)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38(3), 367–426 (1996)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Donoho, D.L.: Neighborly polytopes and sparse solutions of underdetermined linear equations. Statistics Departement Stanford University (2004)Google Scholar
  4. 4.
    Donoho, D.L.: High-dimensional centrally-symmetric polytopes with neighborliness proportional to dimension. Disc. Comp. Geom. 35(4), 617–652 (2006)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Tsaig, Y., Donoho, D.L.: Breakdown of local equivalence between sparse solution and 1 minimization. Signal Process. 86(3), 533–548 (2006)CrossRefMATHGoogle Scholar
  6. 6.
    Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of system of equations to sparse modeling of signals and images. SIAM Rev. 51(1), 34–81 (2002)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Dossal, C., Peyré, G., Fadili, J.: A numerical exploration of compressed sensing recovery. Linear Algebra and its Applications 482(7), 1663–1679 (2010)Google Scholar
  8. 8.
    Foucart, S., Rauhut, H.: A mathematical introduction to compressive sensing. Birkhäuser, Boston (2013)Google Scholar
  9. 9.
    Fuchs, J.-J.: On sparse representations in arbitrary redundant bases. IEEE Trans. Inf. Th. 50(6), 1341–1344 (2004)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Grünbaum, B.: Convex polytopes, volume 221 of Graduate Texts in Mathematics, 2nd. Springer-Verlag, New York (2003)Google Scholar
  11. 11.
    Dohono, D.L., Huo, X.: Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inform. Theory 47(7), 2845–2862 (2001)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Strohmer, T., Heath, R.W. Jr.: Grassmannian frames with applications to coding and communnication. App. Compu. Harm. Anal. 14(3), 257–275 (2003)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Kruschel, C.: Geometrical Interpretations and Algorithmic Verification of Exact Solutions in Compressed Sensing. PhD thesis, TU Braunschweig (2014)Google Scholar
  14. 14.
    Lawrence, J.: Cutting the d-cube. J. Res. Natl. Bur. Stand., 84 (1979)Google Scholar
  15. 15.
    Lonke, Y.: On Random Sections of the Cube. Discret. Comput. Geom. 23, 157–169 (2000)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Lorenz, D.A.: Constructing test instances for Basis Pursuit Denoising. IEEE Trans. Signal Process. 61(5) (2013)Google Scholar
  17. 17.
    Barany, I., Lovasz, L.: Borsuks Theorem and the number of facets of centrally symmetric polytopes. Acta Math. Sci. Hungar. 40, 323–389 (1982)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Istomina, M.N., Pevnyi, A.B.: The Mercedes–Benz frame in the n-dimensional space [in Russian]. Vestnik Syktyvkar. Gos. Univ. Ser. 1, 219–222 (2006)Google Scholar
  19. 19.
    Malozemov, V.N., Borisovich, P.A.: Equiangular tight frames. J. Math. Sci. 157, 789–815 (2009)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    McMullen, P.: The maximum numbers of faces of a convex polytope. Mathematika 17, 179–184 (1970)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Gribonval, R., Nielsen, M.: Sparse representations in unions of bases. IEEE Trans. Inform. Theory 49(12), 3320–3325 (2003)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    O’Neil, P.E.: Hyperplane cuts of an n-cube. Discret. Math. 1(2), 193–195 (1971)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Plumbley, M.D.: On polar polytopes and the recovery of sparse representations. IEEE Trans. Inf. Theory 53(9), 3188–3195 (2007)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Poincaré, H: Sur la genéralisation d’un théorème d’Euler relatif aux polyèdreś. C. R. Acad. Sci. Paris 177, 144–145 (1893)MATHGoogle Scholar
  25. 25.
    Poincaré, H.: Complement à l’Analysis Situś. Rend. Circ. Mat. Palermo. 13, 285–343 (1899)CrossRefMATHGoogle Scholar
  26. 26.
    Chen, S.S., Donoho, D.L., Saunders, A.: Atomic Decomposition by Basis Pursuit. SIAM J. Sci. Comput. 20, 33–61 (1998)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Affentranger, F., Schneider, R.: Random projections of regular simplices. Discret. Comput. Geom. 7, 219–226 (1992)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Shepard, P.M., Geoffrey, C.: Diagrams for centrally symmetric d-polytopes. Mathematika 15, 123–138 (1968)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Steinitz, E.: Über die Eulersche Polyederrelationen. Arch. Math. Phys. 11, 86–88 (1906)Google Scholar
  30. 30.
    Donoho, D.L., Tanner, J.: Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing. Philos. Trans. Royal Soc. A: Math., Phys. Eng. Sci. 367(1906), 4273–4293 (2009)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Tropp, J.A.: Recovery of short, complex, linear combinations va 1-minimization. IEEE Trans. Inform. Theory 51, 1568–1570 (2006)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Ziegler, G.M.: Lectures on polytopes, (152). Graduate Texts in Mathematics. Springer-Verlag, New York (1995)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute for Numerical and Applied MathematicsUniversity of GoettingenGoettingenGermany
  2. 2.Institute for Analysis and AlgebraTU BraunschweigBraunschweigGermany

Personalised recommendations