Advances in Computational Mathematics

, Volume 41, Issue 6, pp 1039–1057 | Cite as

Implicit Euler simulation of one-dimensional Burridge-Knopoff model of earthquakes with set-valued friction laws

Article

Abstract

In the simulations of Burridge-Knopoff (BK) model of earthquakes, the friction force laws are important to produce earthquake-like stick-slip behaviors. Some friction force laws are set-valued and the BK model with them can produce consistent results with observed data of earthquakes in some aspects. However, it is cumbersome to simulate the BK model with set-valued laws by conventional explicit integration methods. In the presence of set-valued laws, the explicit integration methods can easily lead to the numerical chattering, violated constraints on the velocity of force laws, and the difficulty of identifying the states of blocks of the BK model. This paper employs an implicit Euler integration method to simulate the BK model with symmetric and asymmetric set-valued laws. This method removes the numerical chattering in the BK model, even in the cases of large time step sizes. It can easily detect the stuck or slipping state of a block element. Comparing to previous results integrated by explicit integration methods in the literature, the results integrated by this implicit method show smoother curves and lower irregularities in the magnitude distribution of events.

Keywords

Computational seismology Set-valued friction Sliding mode system 

Mathematics Subject Classification (2010)

49Mxx 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Scholz, C.H.: The Mechanics of Earthquakes and Faulting. Cambridge University Press, New York (1990)Google Scholar
  2. 2.
    Scholz, C.H.: Earthquakes and friction laws. Nature 391, 37–42 (1998)CrossRefGoogle Scholar
  3. 3.
    Burridge, R., Knopoff, L.: Model and theoretical seismicity. Bull. Seismol. Soc. Am. 57(3), 341–371 (1967)Google Scholar
  4. 4.
    Carlson, J.M., Langer, J.S.: Mechanical model of an earthquake fault. Phys. Rev. A 40(11), 6470–6484 (1989)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Erickson, B.A., Birnir, B., Lavallée, D.: Periodicity, chaos and localization in a Burridge-Knopoff model of an earthquake with rate-and-state friction. Geophys. J. Int. 187(1), 178–198 (2011)CrossRefGoogle Scholar
  6. 6.
    Xia, J., Gould, H., Klein, W., Rundle, J.B.: Simulation of the Burridge-Knopoff model of earthquakes with variable range stress transfer. Phys. Rev. Lett. 95(24), 248,501.1–248,501.4 (2005)CrossRefGoogle Scholar
  7. 7.
    Xia, J., Gould, H., Klein, W., Rundle, J.B.: Near-mean-field behavior in the generalized Burridge-Knopoff earthquake model with variable-range stress transfer. Phys. Rev. E 77(3), 031,132.1–031,132.11 (2008)CrossRefGoogle Scholar
  8. 8.
    Helmstetter, A., Hergarten, S., Sornette, D.: Foreshocks and aftershocks in the Olami-Feder-Christensen model. Phys. Rev. Lett. 88(23), 238,501–238,504 (2002)CrossRefGoogle Scholar
  9. 9.
    Helmstetter, A., Hergarten, S., Sornette, D.: Properties of foreshocks and aftershocks of the nonconservative self-organized critical Olami-Feder-Christensen model. Phys. Rev. E 70(4), 0461,201–04612,013 (2004)CrossRefGoogle Scholar
  10. 10.
    Carlson, J.M., Langer, J.S., Shaw, B.E., Tang, C.: Intrinsic properties of a Burridge-Knopoff model of an earthquake fault. Phys. Rev. A 44(2), 884–897 (1991)CrossRefGoogle Scholar
  11. 11.
    Carlson, J.M., Langer, J.S.: Properties of earthquakes generated by fault dynamics. Phys. Rev. Lett. 22(62), 2632–2635 (1989)CrossRefGoogle Scholar
  12. 12.
    Marone, C.: Laboratory-derived friction laws and thier application to seismic faulting. Ann. Rev. Earth Planet. Sci. 26, 643–696 (1994)CrossRefGoogle Scholar
  13. 13.
    Dicterich, J.: A constituive law for rate of earthquake production and its application to earthquake clustering. J. Geophys. Res. 99(B2), 2601–2618 (1994)CrossRefGoogle Scholar
  14. 14.
    Mori, T., Kawamura, H.: Simulation study of spatiotemporal correlations of earthquakes as a stick-slip frictional instability. Phys. Rev. Lett. 94(5), 058,501.1–058,501.4 (2005)CrossRefGoogle Scholar
  15. 15.
    Mori, T., Kawamura, H.: Simulation study of the one-dimensional Burridge-Knopoff model of earthquakes. J. Geophys. Res. Solid Earth 111(B7), B073,021–B0730,216 (2006)CrossRefGoogle Scholar
  16. 16.
    Mori, T., Kawamura, H.: Simulation study of the two-dimensional Burridge-Knopoff model of earthquakes. J. Geophys. Res. Solid Earth 113(B6), B063,011–BB0630,116 (2008)CrossRefGoogle Scholar
  17. 17.
    Dupont, P., Hayward, V., Armstrong, B., Altpeter, F.: Single state elastoplastic friction models. IEEE Trans. Autom. Control 47(5), 787–792 (2002)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kikuuwe, R., Takesue, N., Sano, A., Mochiyama, H., Fujimoto, H.: Admittance and impedance representations of friction based on implicit Euler integration. IEEE Trans. Robot. 22(6), 1176–1188 (2006)CrossRefGoogle Scholar
  19. 19.
    Xiong, X., Kikuuwe, R., Yamamoto, M.: A differential-algebraic method to approximate nonsmooth mechanical systems by ordinary differential equations. J. Appl. Math. 2013, 13 (2013). Article ID 320276MathSciNetMATHGoogle Scholar
  20. 20.
    Leine, R.I., Nijmeijer, H.: Dynamics and Bifurcations of Non-smooth Mechanical Systems. Lecture Notes in Applied and Computational Mechanics, vol. 18. Springer-Verlag, Berlin (2004)CrossRefMATHGoogle Scholar
  21. 21.
    Brogliato, B., Daniilidis, A., Lemaréchal, C., Acary, V.: On the equivalence between complementarity systems, projected systems and differential inclusions. Syst. Control Lett. 55(1), 45–51 (2006)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics. Lecture Notes in Applied and Computational Mechanics, vol. 35. Springer-Verlag, Berlin (2008)MATHGoogle Scholar
  23. 23.
    Moreau, J.J.: Numerical aspects of the sweeping process. Comput. Methods Appl. Mech. Eng. 177(3-4), 329–349 (1999)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Dirkse, S.P., Ferris, M.C.: The PATH solver: A non-monotone stabilization scheme for mixed complementarity problems. Optimization Methods and Software 5(2), 123–156 (1995)CrossRefGoogle Scholar
  25. 25.
    Acary, V., Bonnefon, O., Brogliato, B.: Time-stepping numerical simulation of switched circuits within the nonsmooth dynamical systems approach. IEEE Trans. Computer-Aided Design for Integrated Circuits and Systems 29(7), 1042–1055 (2010)CrossRefGoogle Scholar
  26. 26.
    Acary, V., Brogliato, B.: Implicit Euler numerical scheme and chattering-free implementation sliding model systems. Syst. Control Lett. 59(5), 284–293 (2010)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Bastien, J., Schatzman, M.: Numerical precision for differential inclusions with uniqueness. ESAIM: Mathematical Modelling and Numerical Analysis 36(3), 427–460 (2002)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Acary, V., Brogliato, B.: Implicit Euler numerical scheme and chattering-free implementation sliding model systems. Tech. Rep. RR-6886, INRIA (2009)Google Scholar
  29. 29.
    Greenhalgh, S., Acary, V., Brogliato, B.: On preserving dissipativity properties of linear complementarity dynamical systems with the θ-method. Numer. Math. 125(4), 601–637 (2013)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Marques, M.M.: Differential Inclusions in Nonsmooth Mechanical Problems: Shocks and Dry Friction, vol. 9. Birkhauser, Basel (1993)CrossRefMATHGoogle Scholar
  31. 31.
    Moreau, J.J.: Evolution problem associated with a moving convex set in a Hilbert space. Journal of Differential Equations 26(3), 347–374 (1977)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Kyushu UniversityNishi-kuJapan

Personalised recommendations