Advertisement

Advances in Computational Mathematics

, Volume 40, Issue 3, pp 667–682 | Cite as

Numerical experiments with MALDI Imaging data

  • Jan Hendrik Kobarg
  • Peter Maass
  • Janina Oetjen
  • Oren Tropp
  • Eyal Hirsch
  • Chen Sagiv
  • Mohammad Golbabaee
  • Pierre Vandergheynst
Article

Abstract

This article does not present new mathematical results, it solely aims at discussing some numerical experiments with MALDI Imaging data. However, these experiments are based on and could not be done without the mathematical results obtained in the UNLocX project. They tackle two obstacles which presently prevent clinical routine applications of MALDI Imaging technology. In the last decade, matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) has developed into a powerful bioanalytical imaging modality. MALDI imaging data consists of a set of mass spectra, which are measured at different locations of a flat tissue sample. Hence, this technology is capable of revealing the full metabolic structure of the sample under investigation. Sampling resolution as well as spectral resolution is constantly increasing, presently a conventional 2D MALDI Imaging data requires up to 100 GB per dataset. A major challenge towards routine applications of MALDI Imaging in pharmaceutical or medical workflows is the high computational cost for evaluating and visualizing the information content of MALDI imaging data. This becomes even more critical in the near future when considering cohorts or 3D applications. Due to its size and complexity MALDI Imaging constitutes a challenging test case for high performance signal processing. In this article we will apply concepts and algorithms, which were developed within the UNLocX project, to MALDI Imaging data. In particular we will discuss a suitable phase space model for such data and report on implementations of the resulting transform coders using GPU technology. Within the MALDI Imaging workflow this leads to an efficient baseline removal and peak picking. The final goal of data processing in MALDI Imaging is the discrimination of regions having different metabolic structures. We introduce and discuss so-called soft-segmentation maps which are obtained by non-negative matrix factorization incorporating sparsity constraints.

Keywords

Imaging mass spectrometry Dimensionality reduction 

Mathematics Subject Classifications

62P10 62H86 62H30 92C55 65T60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amstalden van Hove, E.R., Smith, D.F., Heeren, R.M.: A concise review of mass spectrometry imaging. J. Chromatogr. A 1217(25), 3946–3954 (2010). Mass Spectrometry: Innovation and Application. Part VICrossRefGoogle Scholar
  2. 2.
    Azzalini, A.: A class of distributions which includes the normal ones. Scand. J. Stat. 12, 171–178 (1985)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Cazares, L.H., Troyer, D., Mendrinos, S., Lance, R.A., Nyalwidhe, J.O., Beydoun, H.A., Clements, M.A., Drake, R.R., Semmes, O.J.: Imaging mass spectrometry of a specific fragment of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 2 discriminates cancer from uninvolved prostate tissue. Clin. Cancer Res. 15(17), 5541–5551 (2009)CrossRefGoogle Scholar
  4. 4.
    Coombes, K.R., Koomen, J.M., Baggerly, K.A., Morris, J.S., Kobayashi, R.: Understanding the characteristics of mass spectrometry data through the use of simulation. Cancer Informat. 1, 41–52 (2005)Google Scholar
  5. 5.
    Di Marco, V.B., Bombi, G.G.: Mathematical functions for the representation of chromatographic peaks. J. Chromatogr. A 931(1–2), 1–30 (2001)CrossRefGoogle Scholar
  6. 6.
    Foley, J.P.: Equations for chromatographic peak modeling and calculation of peak area. Anal. Chem. 59(15), 1984–1987 (1987)CrossRefGoogle Scholar
  7. 7.
    Golbabaee, M., Arberet, S., Vandergheynst, P.: Distributed compressed sensing of hyperspectral images via blind source separation. In: The Asilomar Conference on Signals, Systems, and Computers (2010)Google Scholar
  8. 8.
    Hanselmann, M., Kirchner, M., Renard, B.Y., Amstalden, E.R., Glunde, K., Heeren, R.M.A., Hamprecht, F.A.: Concise representation of mass spectrometry images by probabilistic latent semantic analysis. Anal. Chem. 80(24), 9649–9658 (2008)CrossRefGoogle Scholar
  9. 9.
    Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 5, 1457–1469 (2004)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Lan, K., Jorgenson, J.W.: A hybrid of exponential and gaussian functions as a simple model of asymmetric chromatographic peaks. J. Chromatogr. A 915(1–2), 1–13 (2001)CrossRefGoogle Scholar
  11. 11.
    Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Advances in Neural Information Processing Systems, vol. 13, pp. 556–562 (2001)Google Scholar
  12. 12.
    Lin, C.J.: On the convergence of multiplicative update algorithms for nonnegative matrix factorization. IEEE Trans. Neural Netw. 18(6), 1589–1596 (2007). doi: 10.1109/TNN.2007.895831 CrossRefGoogle Scholar
  13. 13.
    Nathanal, P., David, S., Pierre, V., Gille, P.: UNLocBox: Short User Guide. EPFL, Lausanne (2012)Google Scholar
  14. 14.
    Rauser, S., Marquardt, C., Balluff, B., Deininger, S.O., Albers, C., Belau, E., Hartmer, R., Suckau, D., Specht, K., Ebert, M.P., Schmitt, M., Aubele, M., Höfler, H., Walch, A.: Classification of HER2 receptor status in breast cancer tissues by MALDI imaging mass spectrometry. J. Proteome Res. 9(4), 1854–1863 (2010)CrossRefGoogle Scholar
  15. 15.
    Schober, Y., Guenther, S., Spengler, B., Rmpp, A.: High-resolution matrix-assisted laser desorption/ionization imaging of tryptic peptides from tissue. Rapid Commun. Mass Spectrom. 26(9), 1141–1146 (2012)CrossRefGoogle Scholar
  16. 16.
    Schwamborn, K.: Imaging mass spectrometry in biomarker discovery and validation. J. Prot. 75(16), 4990–4998 (2012)CrossRefGoogle Scholar
  17. 17.
    Shin, H., Sampat, M.P., Koomen, J.M., Markey, M.K.: Wavelet-based adaptive denoising and baseline correction for MALDI TOF MS. OMICS 14(3), 283–295 (2010)CrossRefGoogle Scholar
  18. 18.
    Solon, E.G., Schweitzer, A., Stoeckli, M., Prideaux, B.: Autoradiography, MALDI-MS, and SIMS-MS imaging in pharmaceutical discovery and development. Am. Assoc. Pharm. Sci. J. 12, 11–26 (2010)Google Scholar
  19. 19.
    Stoeckli, M., Chaurand, P., Hallahan, D.E., Caprioli, R.M.: Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat. Med. 7(4), 493–496 (2001)CrossRefGoogle Scholar
  20. 20.
    Trede, D., Kobarg, J.H., Oetjen, J., Thiele, H., Maass, P., Alexandrov, T.: On the importance of mathematical methods for analysis of MALDI-imaging mass spectrometry data. J. Integr. Bioinforma. 9(1), 189 (2012)Google Scholar
  21. 21.
    Watrous, J.D., Alexandrov, T., Dorrestein, P.C.: The evolving field of imaging mass spectrometry and its impact on future biological research. J. Mass Spectrom. 46(2), 209–222 (2011)CrossRefGoogle Scholar
  22. 22.
    Yang, Y.L., Xu, Y., Straight, P., Dorrestein, P.C.: Translating metabolic exchange with imaging mass spectrometry. Nat. Chem. Biol. 5(12), 885–887 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jan Hendrik Kobarg
    • 1
  • Peter Maass
    • 1
  • Janina Oetjen
    • 1
  • Oren Tropp
    • 2
  • Eyal Hirsch
    • 2
  • Chen Sagiv
    • 2
  • Mohammad Golbabaee
    • 3
  • Pierre Vandergheynst
    • 3
  1. 1.University of BremenBremenGermany
  2. 2.SagivTech Ltd.Ra’ananaIsrael
  3. 3.École Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations