Advertisement

Advances in Computational Mathematics

, Volume 40, Issue 1, pp 91–116 | Cite as

Monotone and convex interpolation by weighted quadratic splines

  • Boris I. Kvasov
Article

Abstract

In this paper we discuss the design of algorithms for interpolating discrete data by using weighted C 1 quadratic splines in such a way that the monotonicity and convexity of the data are preserved. The analysis culminates in two algorithms with automatic selection of the shape control parameters: one to preserve the data monotonicity and other to retain the data convexity. Weighted C 1 quadratic B-splines and control point approximation are also considered.

Keywords

Monotone and convex interpolation Weighted C1 quadratic splines Adaptive choice of shape control parameters Weighted B-splines Control point approximation. 

Mathematics Subject Classifications 2010

41A50 65D07 65D17 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akima, H.: A new method of interpolation and smooth curve fitting based on local procedures. J. Assoc. Comput. Mach. 17, 589–602 (1970)CrossRefzbMATHGoogle Scholar
  2. 2.
    Beatson, R.K.: Monotone and convex approximation by splines: error estimation and a curve fitting algorithm, SIAM. J. Numer. Anal. 19, 1278–1285 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Costantini, P.: On monotone and convex spline interpolation. Math. Comput. 46, 203–214 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Costantini, P., Kvasov, B.I., Manni, C.: On discrete hyperbolic tension splines. Adv. Comput. Math. 11, 331–354 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Springer-Verlag, Berlin (1993)Google Scholar
  6. 6.
    DeVore, R.A., Yan, Z.: Error analysis for piecewise quadratic curve fitting algorithms. Comput-Aided Geom. Des. 3, 205–215 (1986)CrossRefGoogle Scholar
  7. 7.
    Farin, G.: Curves and Surfaces for Computer Aided Geometric Design. Academic Press, San Diego (2002)Google Scholar
  8. 8.
    Foley, T.A.: Local control of interval tension using weighted spline. Comput-Aided Geom. Des. 3, 281–294 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Fritsch, F.N., Carlson, R.E.: Monotone piecewise cubic interpolation. SIAM J. Numer. Anal. 17, 238–246 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Goodman, T.N.T.: Shape preserving interpolation by curves. In: Levesley, J., Anderson, I., Mason, J. (eds.) Algorithms for Approximation IV, pp. 24–35. University of Huddersfield (2002)Google Scholar
  11. 11.
    Han X.: Convexity-preserving piecewise rational quartic interpolation. SIAM J. Numer. Anal. 46(2), 920–929 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Koch, P.E., Lyche, T.: Interpolation with exponential B-splines in tension. In: Farin, G. (ed.) Geometric Modeling. Computing/Supplementum 8, pp. 173–190. Springer Verlag, Wien (1993)CrossRefGoogle Scholar
  13. 13.
    Kvasov, B.I.: Error bounds for interpolating parabolic splines. Preprint 2-84. Institute of Theoretical and Applied Mechanics, Siberian Branch of USSR Academy of Sciences, Novosibirsk, pp. 24 (1984). [in Russian]Google Scholar
  14. 14.
    Kvasov, B.I.: Methods of Shape-Preserving Spline Approximation. World Scientific, Singapore (2000)CrossRefzbMATHGoogle Scholar
  15. 15.
    Lam, M.H.: Monotone and convex quadratic spline interpolation. Va. J. Sci. 41(1), 3–13 (1990)Google Scholar
  16. 16.
    Lamberti, P., Manni, C.: Shape preserving C 2 functional interpolation via parametric cubics. Numer. Algoritms. 28, 229–254 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Manni, C.: Parametric shape-preserving Hermite interpolation by piecewise quadratics. In: Fontanella, F., Jetter, K., Laurent, P.-J. (eds.) Advanced Topics in Multivariate Approximation, pp. 211–226. World Scientific, Singapore (1996)Google Scholar
  18. 18.
    McAllister, D.F., Roulier, J.A.: Interpolation by convex quadratic splines. Math. Comput. 32, 1154–1162 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    McAllister, D.F., Roulier, J.A.: Approximation by convex quadratic splines. Approximation Theory III, pp. 757–761. Academic Press, New York (1980)Google Scholar
  20. 20.
    McAllister, D.F., Roulier, J.A.: An algorithm for computing a shape-preserving osculatory spline. ACM Trans. Math. Softw. 7, 331–347 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    McAllister, D.F., Roulier, J.A.: Algorithm 574. Shape-preserving osculatory quadratic splines. ACM Trans. Math. Softw. 7, 384–386 (1981)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Miroshnichenko, V.L.: Isogeometric properties and approximation error bounds of weighted cubic splines, Computational Systems: Splines and their applications. Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, No. 154, 127–154 (1995). [in Russian]Google Scholar
  23. 23.
    Rogina, M., Bosner, T.: On calculating with lower order Chebyshev splines. In: Laurent, P.-J., Sablonnière, P., Schumaker, L.L. (eds.) Curves and Surfaces Design: Saint-Malo 1999, pp. 343–352. Vanderbilt University Press, Nashville (2000)Google Scholar
  24. 24.
    Salkauskas, K.: C 1 splines for interpolation of rapidly varying data. Rocky Mt. J. Math. 14(1), 239–250 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Schmidt, J.W., Hess, W.: Schwach verkoppelte Ungleichungssysteme und konvexe Spline-Interpolation. Elem. Math. 39, 85–96 (1984)zbMATHMathSciNetGoogle Scholar
  26. 26.
    Schumaker, L.L.: On shape preserving quadratic spline interpolation. SIAM J. Numer. Anal. 20(4), 854–864 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Späth, H.: One dimensional spline interpolation algorithms. A K Peters, Natick (1995)zbMATHGoogle Scholar
  28. 28.
    Stechkin, S.B., Subbotin, Yu.N.: Splines in Computational Mathematics. Nauka, Moscow (1976). [in Russian]Google Scholar
  29. 29.
    Voronin, V.T.: Construction of shape preserving splines. Preprint 404. Computing Center, Siberian Branch of USSR Academy of Sciences, Novosibirsk, pp. 27 (1982). [in Russian]Google Scholar
  30. 30.
    Zavyalov, Yu.S., Kvasov, B.I., Miroshnichenko, V.L.: Methods of Spline Functions. Nauka, Moscow (1980). [in Russian]Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Mathematical ModelingInstitute of Computational Technologies, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations