Advances in Computational Mathematics

, Volume 39, Issue 2, pp 311–325 | Cite as

An efficient heuristic approach to detecting graph isomorphism based on combinations of highly discriminating invariants

  • Matthias Dehmer
  • Martin Grabner
  • Abbe Mowshowitz
  • Frank Emmert-Streib
Article

Abstract

The search for an easily computable, finite, complete set of graph invariants remains a challenging research topic. All measures characterizing the topology of a graph that have been developed thus far exhibit some degree of degeneracy, i.e., an inability to distinguish between non-isomorphic graphs. In this paper, we show that certain graph invariants can be useful in substantially reducing the computational complexity of isomorphism testing. Our findings are underpinned by numerical results based on a large scale statistical analysis.

Keywords

Graph isomorphism Graphs Graph measures Graph topology Uniqueness 

Mathematics Subject Classifications (2010)

05C60 05C75 68R10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulrahim, M., Misra, M.: A graph isomorphism algorithm for object recognition. Pattern Anal. Appl. 1, 189–201 (1998)MATHCrossRefGoogle Scholar
  2. 2.
    Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley (1974)Google Scholar
  3. 3.
    Balaban, A.T., Balaban, T.S.: New vertex invariants and topological indices of chemical graphs based on information on distances. J. Math. Chem. 8, 383–397 (1991)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Balaban, A.T., Ivanciuc, O.: Historical development of topological indices. In: Devillers, J., Balaban, A.T. (eds.) Topological Indices and Related Descriptors in QSAR and QSPAR, pp. 21–57. Gordon and Breach Science Publishers. Amsterdam, The Netherlands (1999)Google Scholar
  5. 5.
    Bonchev, D.: Information Theoretic Indices for Characterization of Chemical Structures. Research Studies Press, Chichester (1983)Google Scholar
  6. 6.
    Bonchev, D.: Information theoretic measures of complexity. In: Meyers, R. (ed.) Encyclopedia of Complexity and System Science, vol. 5, pp. 4820–4838. Springer (2009)Google Scholar
  7. 7.
    Bonchev, D., Mekenyan, O., Trinajstić, N.: Isomer discrimination by topological information approach. J. Comput. Chem. 2(2), 127–148 (1981)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bonchev, D., Rouvray, D.H.: Complexity in Chemistry, Biology, and Ecology. Mathematical and Computational Chemistry. Springer, New York, NY, USA (2005)CrossRefGoogle Scholar
  9. 9.
    Bonchev, D., Trinajstić, N.: Information theory, distance matrix and molecular branching. J. Chem. Phys. 67, 4517–4533 (1977)CrossRefGoogle Scholar
  10. 10.
    Conte, D., Foggia, F., Sansone, C., Vento, M.: Thirty years of graph matching in pattern regocnition. Int. J. Pattern Recogn. 18, 265–298 (2004)CrossRefGoogle Scholar
  11. 11.
    Corneil, D.G., Gotlieb, C.C.: An efficient algorithm for graph isomorphism. J. ACM 17, 51–64 (1970)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Cvetković, D.M., Doob, M., Sachs, H.: Spectra of graphs. theory and application. Deutscher Verlag der Wissenschaften, Berlin, Germany (1980)Google Scholar
  13. 13.
    Darga, P.T., Sakallah, K.A., Markov, I.L.: Faster symmetry discovery using sparsity of symmetries. In: Proceedings of the 45st Design Automation Conference, Anaheim, California, pp. 149–154 (2008)Google Scholar
  14. 14.
    Dehmer, M., Mowshowitz, A.: A history of graph entropy measures. Inform. Sci. 1, 57–78 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Dehmer, M., Müller, L., Graber, A.: New polynomial-based molecular descriptors with low degeneracy. PLoS ONE 5(7), e11393 (2010)CrossRefGoogle Scholar
  16. 16.
    Dehmer, M., Varmuza, K.: On aspects of the degeneracy of topological indices. In: Enachescu, F., Filip, F.G., Iantovics, B. (eds.) Advanced Computational Technologies. Romanian Academy Press (2012, in press)Google Scholar
  17. 17.
    Dehmer, M., Varmuza, K., Borgert, S., Emmert-Streib, F.: On entropy-based molecular descriptors: Statistical analysis of real and synthetic chemical structures. J. Chem. Inf. Model. 49, 1655–1663 (2009)CrossRefGoogle Scholar
  18. 18.
    Devillers, J., Balaban, A.T.: Topological Indices and Related Descriptors in QSAR and QSPR. Gordon and Breach Science Publishers. Amsterdam, The Netherlands (1999)Google Scholar
  19. 19.
    Diudea, M.V., Gutman, I., Jäntschi, L.: Molecular Topology. Nova Publishing, New York, NY, USA (2001)Google Scholar
  20. 20.
    Diudea, M.V., Ilić, A., Varmuza, K., Dehmer, M.: Network analysis using a novel highly discriminating topological index. Complexity 16, 32–39 (2011)CrossRefGoogle Scholar
  21. 21.
    Emmert-Streib, F., Dehmer, M.: Exploring statistical and population aspects of network complexity. PLoS ONE 7, e34,523 (2012)CrossRefGoogle Scholar
  22. 22.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences. Freeman (1979)Google Scholar
  23. 23.
    Gross, J.L., Yellen, J.: Graph Theory and Its Applications, 2nd edn. Discrete Mathematics and its Applications. Chapman & Hall, Boca Raton (2006)Google Scholar
  24. 24.
    Harary, F.: Graph Theory. Addison Wesley Publishing Company, Reading, MA, USA (1969)Google Scholar
  25. 25.
    Jukna, S.: On graph complexity. Combin. Probab. Comput. 15, 855–876 (2006)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Junttila, T., Kaski, P.: Engineering an efficient canonical labeling tool for large and sparse graphs. In: Applegate, D., Brodat, G.S., Panario, D., Sedgewick, R. (eds.) Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments and the Fourth Workshop on Analytic Algorithms and Combinatorics. SIAM (2007)Google Scholar
  27. 27.
    Kim, J., Wilhelm, T.: What is a complex graph? Physica A 387, 2637–2652 (2008)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Konstantinova, E.V.: The discrimination ability of some topological and information distance indices for graphs of unbranched hexagonal systems. J. Chem. Inf. Comput. Sci. 36, 54–57 (1996)CrossRefGoogle Scholar
  29. 29.
    Konstantinova, E.V., Skorobogatov, V.A., Vidyuk, M.V.: Applications of information theory in chemical graph theory. Indian J. Chem. A 42, 1227–1240 (2002)Google Scholar
  30. 30.
    Lewis, A.: The convex analysis of unitarily invariant matrix functions. J. Convex Anal. 2, 173–183 (1995)MathSciNetMATHGoogle Scholar
  31. 31.
    Liu, X., Klein, D.J.: The graph isomorphism problem. J. Comp. Chem. 12(10), 1243–1251 (1991)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial time. J. Comput. Syst. Sci. 25, 42–49 (1982)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    McKay, B.D.: Graph isomorphisms. Congr. Numer. 730, 45–87 (1981)MathSciNetGoogle Scholar
  34. 34.
    McKay, B.D.: Isomorph-free exhaustive generation. J. Algorithm 26, 306–324 (1998)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    McKay, B.D.: Nauty. http://cs.anu.edu.au/~bdm/nauty/ (2010)
  36. 36.
    Mehler, A., Weiß, P., Lücking, A.: A network model of interpersonal alignment. Entropy 12(6), 1440–1483 (2010). doi:10.3390/e12061440 CrossRefGoogle Scholar
  37. 37.
    Mowshowitz, A.: Entropy and the complexity of the graphs I: an index of the relative complexity of a graph. Bull. Math. Biophys. 30, 175–204 (1968)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Müller, L.A.J., Kugler, K.G., Dander, A., Graber, A., Dehmer, M.: QuACN—an R package for analyzing complex biological networks quantitatively. Bioinformatics 27(1), 140–144 (2011)CrossRefGoogle Scholar
  39. 39.
    Presa, J.L.L.: Efficient algorithms for graph isomorphism testing. Ph.D. thesis, Department of Computer Science, Universidad Rey Juan Carlos, Madrid, Spain (2009)Google Scholar
  40. 40.
    R, software: A language and environment for statistical computing. R Development Core Team, Foundation for Statistical Computing, Vienna, Austria. www.r-project.org (2011)
  41. 41.
    Randić, M.: On characterization of molecular branching. J. Am. Chem. Soc. 97, 6609–6615 (1975)CrossRefGoogle Scholar
  42. 42.
    Randić, M., DeAlba, L.M., Harris, F.E.: Graphs with the same detour matrix. Croat. Chem. Acta 71, 53–68 (1998)Google Scholar
  43. 43.
    Randić, M., Vracko, M., Novic, M.: Eigenvalues as molecular descriptors. In: Diudea, M.V. (ed.) QSPR/QSAR Studies by Molecular Descriptors, pp. 93–120. Nova Publishing, Huntington, NY, USA (2001)Google Scholar
  44. 44.
    Raychaudhury, C., Ray, S.K., Ghosh, J.J., Roy, A.B., Basak, S.C.: Discrimination of isomeric structures using information theoretic topological indices. J. Comput. Chem. 5, 581–588 (1984)CrossRefGoogle Scholar
  45. 45.
    Read, R., Corneil, D.: The graph isomorphism disease. J. Graph Theory 1, 339–363 (1977)MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Solé, R.V., Valverde, S.: Information theory of complex networks: On evolution and architectural constraints. In: Lecture Notes in Physics, vol. 650, pp. 189–207 (2004)Google Scholar
  47. 47.
    Toda, S.: Graph isomorphism: its complexity and algorithms (abstract). In: Rangan, C.P., Raman, V., Ramanujam, R. (eds.) FSTTCS, Foundations of Software Technology and Theoretical Computer Science, 19th Conference, Chennai, India, 13–15 Dec 1999, Proceedings, Lecture Notes in Computer Science, vol. 1738, p. 341. Springer (1999)Google Scholar
  48. 48.
    Todeschini, R., Consonni, V., Mannhold, R.: Handbook of Molecular Descriptors. Wiley-VCH, Weinheim, Germany (2002)Google Scholar
  49. 49.
    Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42 (1976)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Zemlyachenko, V.N., Korneenko, N.M., Tyshkevich, R.I.: Graph isomorphism problem. J. Math. Sci. 29, 1426–1481 (1985)MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Matthias Dehmer
    • 1
  • Martin Grabner
    • 1
  • Abbe Mowshowitz
    • 2
  • Frank Emmert-Streib
    • 3
  1. 1.Institute for Bioinformatics and Translational ResearchUMITHall in TyrolAustria
  2. 2.Department of Computer ScienceThe City College of New York (CUNY)New YorkUSA
  3. 3.Computational Biology and Machine Learning Lab, Center for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical SciencesQueen’s University BelfastBelfastUK

Personalised recommendations