Advances in Computational Mathematics

, Volume 38, Issue 4, pp 891–921 | Cite as

Reproducing kernels of Sobolev spaces via a green kernel approach with differential operators and boundary operators



We introduce a vector differential operator P and a vector boundary operator B to derive a reproducing kernel along with its associated Hilbert space which is shown to be embedded in a classical Sobolev space. This reproducing kernel is a Green kernel of differential operator L: = P  ∗ T P with homogeneous or nonhomogeneous boundary conditions given by B, where we ensure that the distributional adjoint operator P  ∗  of P is well-defined in the distributional sense. We represent the inner product of the reproducing-kernel Hilbert space in terms of the operators P and B. In addition, we find relationships for the eigenfunctions and eigenvalues of the reproducing kernel and the operators with homogeneous or nonhomogeneous boundary conditions. These eigenfunctions and eigenvalues are used to compute a series expansion of the reproducing kernel and an orthonormal basis of the reproducing-kernel Hilbert space. Our theoretical results provide perhaps a more intuitive way of understanding what kind of functions are well approximated by the reproducing kernel-based interpolant to a given multivariate data sample.


Green kernel Reproducing kernel Differential operator Boundary operator Eigenfunction Eigenvalue 

Mathematics Subject Classifications (2010)

41A30 65D05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn.. Pure and Applied Mathematics, vol. 140. Academic, New York (2003)MATHGoogle Scholar
  2. 2.
    Atkinson, K.E., Hansen, O.: A Spectral Method for the Eigenvalue Problem for Elliptic Equations. Reports on Computational Mathematics #177, Dept. of Mathematics, University of Iowa (2009)Google Scholar
  3. 3.
    Berlinet, A., Thomas-Agnan, C.: Reproducing Kernel Hilbert Spaces in Probability and Statistics. Kluwer, Boston, MA (2004)MATHCrossRefGoogle Scholar
  4. 4.
    Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge, UK (2003)MATHCrossRefGoogle Scholar
  5. 5.
    Cialenco, I., Fasshauer, G.E., Ye, Q.: Approximation of stochastic partial differential equations by a kernel-based collocation method.∼fass/Kernel_Collocation_SPDE_2011-08-21_arxiv.pdf (2011). Accessed 10 Dec 2011
  6. 6.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 1. Interscience, New York (1953)Google Scholar
  7. 7.
    DeVore, R., Ron, A.: Approximation using scattered shifts of a multivariate function. Trans. Am. Math. Soc. 362, 6205–6229 (2010)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. American Mathematical Society Press (1998)Google Scholar
  9. 9.
    Fasshauer, G.E.: Meshfree Approximation Methods with Matlab. Interdisciplinary Mathematical Sciences, vol. 6. World Scientific, Singapore (2007)Google Scholar
  10. 10.
    Fasshauer, G.E., Ye, Q.: Reproducing kernels of generalized Sobolev spaces via a Green function approach with distributional operators. Numer. Math. 119(3), 585–611 (2011)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    De Figueiredo, R.J.P., Chen, G.: pdLg splines defined by partial differential operators with initial and boundary value conditions. SIAM J. Numer. Anal. 27(2), 519–528 (1990)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Flyer, N., Wright, G.B.: A radial basis function method for the shallow water equations on a sphere. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 465(2106), 1949–1976 (2009)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Fornberg, B., Piret, C.: On choosing a radial basis function and a shape parameter when solving a convective PDE on a sphere. J. Comput. Phys. 227(5), 2758–2780 (2008)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Forrester, A.I.J., Sóbester, A., Keane, A.J.: Engineering Design via Surrogate Modelling: a Practical Guide. Wiley, New York (2008)CrossRefGoogle Scholar
  15. 15.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Classics in Mathematics. Springer, New York (2004)Google Scholar
  16. 16.
    Hunter, J.K., Nachtergaele, B.: Applied Analysis. World Scientific, Singapore (2005)Google Scholar
  17. 17.
    Kansa, E.J.: Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics—II: solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl. 19, 147–161 (1990)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Larsson, E., Fornberg, B.: A numerical study of some radial basis function based solution methods for elliptic PDEs. Comput. Math. Appl. 46, 891–902 (2003)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Schaback, R.: Convergence of unsymmetric kernel-based meshless collocation methods. SIAM J. Numer. Anal. 45(1), 333–351 (2007)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Schaback, R.: Spectrally optimized derivative formulae. Data page of R. Schaback’s Research Group (2008)Google Scholar
  21. 21.
    Song, G., Riddle, J., Fasshauer, G.E., Hickernell, F.J.: Multivariate interpolation with increasingly flat radial basis functions of finite smoothness. Adv. Comput. Math. doi: 10.1007/s10444-011-9192-5
  22. 22.
    Steinwart, I., Christmann, A.: Support Vector Machines. Springer Science Press (2008)Google Scholar
  23. 23.
    Wahba, G.: Spline Models for Observational Data, 2nd edn. Capital City Press, Montpelier, Vermont (1992)Google Scholar
  24. 24.
    Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge, UK (2005)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.Department of Applied MathematicsIllinois Institute of TechnologyChicagoUSA

Personalised recommendations