Advances in Computational Mathematics

, Volume 36, Issue 1, pp 67–78

Approximate reconstruction of bandlimited functions for the integrate and fire sampler

  • Hans G. Feichtinger
  • José C. Príncipe
  • José Luis Romero
  • Alexander Singh Alvarado
  • Gino Angelo Velasco
Article

Abstract

In this paper we study the reconstruction of a bandlimited signal from samples generated by the integrate and fire model. This sampler allows us to trade complexity in the reconstruction algorithms for simple hardware implementations, and is specially convenient in situations where the sampling device is limited in terms of power, area and bandwidth. Although perfect reconstruction for this sampler is impossible, we give a general approximate reconstruction procedure and bound the corresponding error. We also show the performance of the proposed algorithm through numerical simulations.

Keywords

Integrate and fire Non-uniform sampling Bandlimited function 

Mathematics Subject Classifications (2010)

94A12 94A20 41A30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aldroubi, A.: Non-uniform weighted average sampling and reconstruction in shift-invariant and wavelet spaces. Appl. Comput. Harmon. Anal. 13(2), 151–161 (2002)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Aldroubi, A., Gröchenig, K.: Nonuniform sampling and reconstruction in shift-invariant spaces. SIAM Rev. 43(4), 585–620 (2001)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Alvarado, A., Principe, J., Harris, J.: Stimulus reconstruction from the biphasic integrate-and-fire sampler. In: 4th International IEEE/EMBS Conference on Neural Engineering, NER ’09, pp. 415–418 (2009). doi:10.1109/NER.2009.5109321
  4. 4.
    Chen, D., Li, Y., Xu, D., Harris, J., Principe, J.: Asynchronous biphasic pulse signal coding and its cmos realization. In: Proceedings of IEEE International Symposium on Circuits and Systems, ISCAS 2006, pp. 2293–2296 (2006). doi:10.1109/ISCAS.2006.1693079
  5. 5.
    Feichtinger, H.G.: Banach convolution algebras of Wiener type. In: B. Sz. Nagy, J. Szabados (eds.) Proc. Conf. on Functions, Series, Operators, Budapest 1980, Colloq. Math. Soc. Janos Bolyai, vol. 35, pp. 509–524. North-Holland, Amsterdam (1983)Google Scholar
  6. 6.
    Feichtinger, H.G.: Wiener amalgams over Euclidean spaces and some of their applications. In: K. Jarosz (ed.) Function Spaces, Proc Conf, Edwardsville/IL (USA) 1990, Lect. N otes Pure A ppl. Math., vol. 136, pp. 123–137. Marcel Dekker, New York (1992)Google Scholar
  7. 7.
    Feichtinger, H.G., Gröchenig, K.: Theory and practice of irregular sampling. In: Benedetto, J., Frazier, M. (eds.) Wavelets: Mathematics and Applications, Studies in Advanced Mathematics, pp. 305–363. CRC Press, Boca Raton, FL (1994)Google Scholar
  8. 8.
    Gerstner, W., Kistler, W.: Spiking Neuron Models. Cambridge University Press (2002)Google Scholar
  9. 9.
    Lazar, A.A., Pnevmatikakis, E.A.: Reconstruction of sensory stimuli encoded with integrate-and-fire neurons with random thresholds. EURASTP J. Appl. Signal Process. 2009 (2009). doi:10.1155/2009/682930 Google Scholar
  10. 10.
    Lazar, A.A., Simonyi, E.K., Toth, L.T.: A Toeplitz formulation of a real-time algorithm for time decoding machines. In: Proceedings of the Conference on Telecommunication Systems, Modeling and Analysis (2005)Google Scholar
  11. 11.
    Lazar, A.A., Toth, L.T.: Time encoding and perfect recovery of bandlimited signals. In: IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 6, pp. VI709–712 (2003). doi:10.1109/ICASSP.2003.1201780
  12. 12.
    Rieke, F., Warland, D., de Ruyter, Bialek, W.: Spikes: Exploring the Neural Code. The MIT Press (1997)Google Scholar
  13. 13.
    Sanchez, J.C., Principe, J.C., Nishida, T., Bashirullah, R., Harris, J.G., Fortes, J.A.B.: Technology and signal processing for brain-machine interfaces. IEEE Signal Process. Mag. 25(1), 29–40 (2008)CrossRefGoogle Scholar
  14. 14.
    Schwab, H.: Reconstruction from averages. Ph.D. thesis, Dept. Mathematics, Univ. Vienna (2003)Google Scholar
  15. 15.
    Sun, W., Zhou, X.: Reconstruction of band-limited functions from local averages. Constr. Approx. 18(2), 205–222 (2002)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Wei, D.: Time based analog to digital converters. Ph.D. thesis, University of Florida (2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Hans G. Feichtinger
    • 1
  • José C. Príncipe
    • 2
  • José Luis Romero
    • 3
    • 4
  • Alexander Singh Alvarado
    • 2
  • Gino Angelo Velasco
    • 1
    • 5
  1. 1.Faculty of MathematicsUniversity of ViennaViennaAustria
  2. 2.Department of Electrical and Computer EngineeringUniversity of FloridaGainesvilleUSA
  3. 3.Departamento de Matemática, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresCapital FederalArgentina
  4. 4.CONICETBuenos AiresArgentina
  5. 5.Institute of MathematicsUniversity of the PhilippinesDiliman, Quezon CityPhilippines

Personalised recommendations