Advances in Computational Mathematics

, Volume 34, Issue 2, pp 185–200 | Cite as

Frames and their associated \(\emph{H}_{{\kern-2pt}\emph{F}}^{\emph{p}}\)-subspaces

Article

Abstract

Given a frame F = {f j } for a separable Hilbert space H, we introduce the linear subspace \(H^{p}_{F}\) of H consisting of elements whose frame coefficient sequences belong to the ℓ p -space, where 1 ≤ p < 2. Our focus is on the general theory of these spaces, and we investigate different aspects of these spaces in relation to reconstructions, p-frames, realizations and dilations. In particular we show that for closed linear subspaces of H, only finite dimensional ones can be realized as \(H^{p}_{F}\)-spaces for some frame F. We also prove that with a mild decay condition on the frame F the frame expansion of any element in \(H_{F}^{p}\) converges in both the Hilbert space norm and the ||·||F, p-norm which is induced by the ℓ p -norm.

Keywords

Frames Riesz bases Reconstruction Dilation 

Mathematics Subject Classifications (2010)

46C99 47B99 46B15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balan, R., Casazza, P., Heil, C., Landau, Z.: Density, overcompleteness, and localization of frames. I. Theory. J. Fourier Anal. Appl. 12, 105–143 (2006)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Balan, R., Casazza, P., Heil, C., Landau, Z.: Density, overcompleteness, and localization of frames. II. Gabor systems. J. Fourier Anal. Appl. 12, 309–344 (2006)MathSciNetGoogle Scholar
  3. 3.
    Benedetto, J.J.: Harmonic Analysis and Applications. CRC Press, Boca Raton, New York, London, Tokyo (1996)Google Scholar
  4. 4.
    Carothers, N.L.: A Short Course on Banach Space Theory. Cambridge University Press, Cambridge (2005)MATHGoogle Scholar
  5. 5.
    Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhäuser, Boston (2003)MATHGoogle Scholar
  6. 6.
    Cordero, E., Gröchenig, K.: Localization of frames II. Appl. Comput. Harmon. Anal. 17, 29–47 (2004)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Dai, X., Larson, D.R.: Wandering vectors for unitary systems and orthogonal wavelets. Mem. Am. Math. Soc. 134(640), 1–68 (1998)Google Scholar
  8. 8.
    Daubechies, I.: Ten Lectures on Wavelets. CBS-NSF Regional Conferences in Applied Mathematics No. 61, SIAM (1992)Google Scholar
  9. 9.
    Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952)MATHMathSciNetGoogle Scholar
  10. 10.
    Fornasier, M., Gröchenig, K.: Intrinsic localization of frames. Constr. Approx. 22(3), 395–415 (2005)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Gröchenig, K.: Localization of frames, Banach frames, and the invertibility of the frame operator. J. Fourier Anal. Appl. 10, 105–132 (2004)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gröchenig, K.: Foundations of Time-Frequency Analysis. Borkhäuser, Boston, Basel, Berlin (2000)Google Scholar
  13. 13.
    Han, D., Larson, D.R.: Frames, bases and group representations. Mem. Am. Math. Soc. 147(697), 1–94 (2000)Google Scholar
  14. 14.
    Heil, C., Larson, D.: Operator theory and modulation spaces. Contemp. Math. 451, 137–150 (2008)MathSciNetGoogle Scholar
  15. 15.
    Hernández, E., Weiss, G.: A First Course on Wavelets. With a foreword by Yves Meyer. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, (1996)Google Scholar
  16. 16.
    Jia, R.Q.: Shift-invariant spaces and linear operator equations. Isr. J. Math. 103, 259–288 (1998)MATHCrossRefGoogle Scholar
  17. 17.
    Jia, R.Q., Micchelli, C.A.: Using the refinement equations for the construction of pre-wavelets II: Powers of two. In: Laurent, P.J., Le Mehaute, A., Schumaker, L.L., (eds.) Curves and Surfaces, pp. 209–246. Academic Press, New York (1991)Google Scholar
  18. 18.
    Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, San Diego (1998)MATHGoogle Scholar
  19. 19.
    Sun, Q.: Wiener’s lemma for infinite matrices. Trans. Am. Math. Soc. 359(7), 3099–3123 (2007)MATHCrossRefGoogle Scholar
  20. 20.
    Shin, C., Sun, Q.: Stability of localized operator. J. Funct. Anal. 256(8), 2417–2439 (2009)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Young, R.M.: An Introduction to Nonharmonic Fourier Series. Academic Press, New York (1980)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Central FloridaOrlandoUSA
  2. 2.Department of MathematicsNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China
  3. 3.Department of MathematicsNational University of SingaporeSingaporeRepublic of Singapore

Personalised recommendations