Advances in Computational Mathematics

, Volume 33, Issue 3, pp 331–348 | Cite as

Quaternion and Hopf map characterizations for the existence of rational rotation-minimizing frames on quintic space curves

Open Access
Article

Abstract

Simple criteria for the existence of rational rotation-minimizing frames (RRMFs) on quintic space curves are determined, in terms of both the quaternion and Hopf map representations for Pythagorean-hodograph (PH) curves in ℝ3. In both cases, these criteria amount to satisfaction of three scalar constraints that are quadratic in the curve coefficients, and are thus much simpler than previous criteria. In quaternion form, RRMF quintics can be characterized by just a single quadratic (vector) constraint on the three quaternion coefficients. In the Hopf map form, the characterization is in terms of one real and one complex quadratic constraint on the six complex coefficients. The identification of these constraints is based on introducing a “canonical form” for spatial PH curves and judicious transformations between the quaternion and Hopf map descriptions. The simplicity of these new characterizations for the RRMF quintics should help facilitate the development of algorithms for their construction, analysis, and practical use in applications such as animation, spatial motion planning, and swept surface constructions.

Keywords

Rotation-minimizing frames Pythagorean-hodograph curves Angular velocity Hopf map Complex polynomials Quaternions 

Mathematics Subject Classifications (2000)

12Y05 14H45 14H50 14Q05 53A04 68U05 68U07 

References

  1. 1.
    Bishop, R.L.: There is more than one way to frame a curve. Am. Math. Mo. 82, 246–251 (1975)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Choi, H.I., Han, C.Y.: Euler–Rodrigues frames on spatial Pythagorean-hodograph curves. Comput. Aided Geom. Des. 19, 603–620 (2002)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Choi, H.I., Lee, D.S., Moon, H.P.: Clifford algebra, spin representation, and rational parameterization of curves and surfaces. Adv. Comp. Math. 17, 5–48 (2002)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Farouki, R.T.: Exact rotation-minimizing frames for spatial Pythagorean-hodograph curves. Graph. Models 64, 382–395 (2002)MATHCrossRefGoogle Scholar
  5. 5.
    Farouki, R.T.: Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable. Springer, Berlin (2008)MATHCrossRefGoogle Scholar
  6. 6.
    Farouki, R.T., al–Kandari, M., Sakkalis, T.: Structural invariance of spatial Pythagorean hodographs. Comput. Aided Geom. Des. 19, 395–407 (2002)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Farouki, R.T., al–Kandari, M., Sakkalis, T. Hermite interpolation by rotation-invariant spatial Pythagorean-hodograph curves. Adv. Comp. Math. 17, 369–383 (2002)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Farouki, R.T., Giannelli, C., Manni, C., Sestini, A.: Identification of spatial PH quintic Hermite interpolants with near-optimal shape measures. Comput. Aided Geom. Des. 25, 274–297 (2008)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Farouki, R.T., Giannelli, C., Manni, C., Sestini, A.: Quintic space curves with rational rotation-minimizing frames. Comput. Aided Geom. Des. 26, 580–592 (2009)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Farouki, R.T., Giannelli, C., Sestini, A.: Helical polynomial curves and double Pythagorean hodographs I. Quaternion and Hopf map representations. J. Symb. Comput. 44, 161–179 (2009)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Farouki, R.T., Giannelli, C., Sestini, A.: Helical polynomial curves and double Pythagorean hodographs II. Enumeration of low-degree curves. J. Symb. Comput. 44, 307–332 (2009)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Farouki, R.T., Han, C.Y.: Rational approximation schemes for rotation-minimizing frames on Pythagorean-hodograph curves. Comput. Aided Geom. Des. 20, 435–454 (2003)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Farouki, R.T., Han, C.Y., Manni, C., Sestini, A.: Characterization and construction of helical polynomial space curves. J. Comput. Appl. Math. 162, 365–392 (2004)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Guggenheimer, H.: Computing frames along a trajectory. Comput. Aided Geom. Des. 6, 77–78 (1989)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Han, C.Y.: Nonexistence of rational rotation-minimizing frames on cubic curves. Comput. Aided Geom. Des. 25, 298–304 (2008)MATHCrossRefGoogle Scholar
  16. 16.
    Jüttler, B.: Generating rational frames of space curves via Hermite interpolation with Pythagorean hodograph cubic splines. In: Geometric Modelling and Processing ’98, pp. 83–106. Bookplus, Seoul (1998)Google Scholar
  17. 17.
    Jüttler, B., Mäurer, C.: Cubic Pythagorean hodograph spline curves and applications to sweep surface modelling. Comput. Aided Des. 31, 73–83 (1999)MATHCrossRefGoogle Scholar
  18. 18.
    Jüttler, B., Mäurer, C.: Rational approximation of rotation minimizing frames using Pythagorean-hodograph cubics. J. Geom. Graphics 3, 141–159 (1999)MATHGoogle Scholar
  19. 19.
    Klok, F.: Two moving coordinate frames for sweeping along a 3D trajectory. Comput. Aided Geom. Des. 3, 217–229 (1986)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Kreyszig, E.: Differential Geometry. University of Toronto Press (1959)Google Scholar
  21. 21.
    Monterde, J.: A characterization of helical polynomial curves of any degree. Adv. Comp. Math. 30, 61–78 (2009)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Roe, J.: Elementary Geometry. Oxford University Press, Oxford (1993)MATHGoogle Scholar
  23. 23.
    Sír, Z., Jüttler, B.: Spatial Pythagorean hodograph quintics and the approximation of pipe surfaces. In: Martin, R., Bez, H., Sabin, M. (eds.) Mathematics of Surfaces XI, pp. 364–380. Springer, Berlin (2005)CrossRefGoogle Scholar
  24. 24.
    Wang, W., Joe, B.: Robust computation of the rotation minimizing frame for sweep surface modelling. Comput. Aided Des. 29, 379–391 (1997)CrossRefGoogle Scholar
  25. 25.
    Wang, W., Jüttler, B., Zheng, D., Liu, Y.: Computation of rotation minimizing frames. ACM Trans. Graphics 27(1), 1–18, Article 2 (2008)Google Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  1. 1.Department of Mechanical and Aeronautical EngineeringUniversity of CaliforniaDavisUSA

Personalised recommendations