Advances in Computational Mathematics

, Volume 33, Issue 2, pp 191–214 | Cite as

Linear precision for parametric patches

Article

Abstract

We give a precise mathematical formulation for the notions of a parametric patch and linear precision, and establish their elementary properties. We relate linear precision to the geometry of a particular linear projection, giving necessary (and quite restrictive) conditions for a patch to possess linear precision. A main focus is on linear precision for Krasauskas’ toric patches, which we show is equivalent to a certain rational map on \({\mathbb C}{\mathbb P}^d\) being a birational isomorphism. Lastly, we establish the connection between linear precision for toric surface patches and maximum likelihood degree for discrete exponential families in algebraic statistics, and show how iterative proportional fitting may be used to compute toric patches.

Keywords

Tensor product Bézier surfaces Triangular Bézier surface patches Barycentric coordinates Iterative proportional fitting 

Mathematics Subject Classifications (2000)

65D17 14M25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Catanese, F., Hoşten, S., Khetan, A., Sturmfels, B.: The maximum likelihood degree. Amer. J. Math. 128(3), 671–697 (2006)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Clemens, C.H., Griffiths, P.A.: The intermediate Jacobian of the cubic threefold. Ann. Math. 95(2), 281–356 (1972)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. UTM. Springer, New York (1992)Google Scholar
  4. 4.
    Cox, D.: What is a toric variety? In: Topics in Algebraic Geometry and Geometric Modeling. Contemp. Math., vol. 334, pp. 203–223. American Mathematical Society, Providence (2003)Google Scholar
  5. 5.
    Darroch, J.N., Ratcliff, D.: Generalized iterative scaling for log-linear models. Ann. Math. Stat. 43, 1470–1480 (1972)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    DeRose, T., Goldman, R., Hagen, H., Mann, S.: Functional composition algorithms via blossoming. ACM Trans. Graph. 12, 113–135 (1993)MATHCrossRefGoogle Scholar
  7. 7.
    DeRose, T.D.: Rational Bézier curves and surfaces on projective domains. In: NURBS for Curve and Surface Design (Tempe, AZ, 1990), pp. 35–45. SIAM, Philadelphia (1991)Google Scholar
  8. 8.
    Farin, G.: Curves and surfaces for computer-aided geometric design. In: Computer Science and Scientific Computing. Academic, San Diego (1997)Google Scholar
  9. 9.
    Floater, M.S.: Mean value coordinates. Comput. Aided Geom. Design 20(1), 19–27 (2003)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Fulton, W.: Introduction to toric varieties. In: Annals of Mathematics Studies. The William H. Roever Lectures in Geometry, vol. 131. Princeton University Press, Princeton (1993)Google Scholar
  11. 11.
    Karčiauskas, K.: Rational M-patches and tensor-border patches. In: Topics in Algebraic Geometry and Geometric Modeling. Contemp. Math., vol. 334, pp. 101–128. American Mathematical Society, Providence (2003)Google Scholar
  12. 12.
    Karčiauskas, K., Krasauskas, R.: Comparison of different multisided patches using algebraic geometry. In: Laurent, P.-J., Sablonniere, P. Schumaker, L.L. (eds.) Curve and Surface Design: Saint-Malo 1999, pp. 163–172. Vanderbilt University Press, Nashville (2000)Google Scholar
  13. 13.
    Krasauskas, R.: Toric surface patches. Advances in geometrical algorithms and representations. Adv. Comput. Math. 17(1–2), 89–133 (2002)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Krasauskas, R.: Bézier patches on almost toric surfaces. In: Algebraic Geometry and Geometric Modeling. Math. Vis., pp. 135–150. Springer, Berlin (2006)CrossRefGoogle Scholar
  15. 15.
    Lauritzen, S.L.: Graphical models. Oxford Statistical Science Series, vol. 17. Oxford Science Publications, The Clarendon Press Oxford University Press, New York (1996)Google Scholar
  16. 16.
    Loop, C.T., DeRose, T.D.: A multisided generalization of Bézier surfaces. ACM Trans. Graph. 8(3), 204–234 (1989)MATHCrossRefGoogle Scholar
  17. 17.
    Pachter, L., Sturmfels, B. (eds.): Algebraic Statistics for Computational Biology. Cambridge University Press, New York (2005)MATHGoogle Scholar
  18. 18.
    Sottile, F.: Toric ideals, real toric varieties, and the moment map. In: Topics in Algebraic Geometry and Geometric Modeling. Contemp. Math., vol. 334, pp. 225–240. American Mathematical Society, Providence (2003)Google Scholar
  19. 19.
    Sturmfels, B.: Gröbner Bases and Convex Polytopes. American Mathematical Society, Providence (1996)MATHGoogle Scholar
  20. 20.
    von Bothmer, H.-C.G., Ranestad, K., Sottile, F.: Linear precision for toric surface patches, 25 pp. ArXiv.org/0806.3230 (submitted)
  21. 21.
    Wachspress, E.L.: A rational finite element basis. In: Mathematics in Science and Engineering, vol. 114. Academic [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York (1975)Google Scholar
  22. 22.
    Warren, J.: Creating multisided rational Bézier surfaces using base points. ACM Trans. Graph. 11(2), 127–139 (1992)MATHCrossRefGoogle Scholar
  23. 23.
    Warren, J.: Barycentric coordinates for convex polytopes. Adv. Comput. Math. 6(2), 97–108 (1996, 1997)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsSam Houston State UniversityHuntsvilleUSA
  2. 2.Department of MathematicsTexas A&M UniversityCollege StationUSA

Personalised recommendations