Advances in Computational Mathematics

, Volume 30, Issue 2, pp 177–200

Spline wavelets on the interval with homogeneous boundary conditions



In this paper we investigate spline wavelets on the interval with homogeneous boundary conditions. Starting with a pair of families of B-splines on the unit interval, we give a general method to explicitly construct wavelets satisfying the desired homogeneous boundary conditions. On the basis of a new development of multiresolution analysis, we show that these wavelets form Riesz bases of certain Sobolev spaces. The wavelet bases investigated in this paper are suitable for numerical solutions of ordinary and partial differential equations.


Spline wavelets Wavelets on the interval Slant matrices Multiresolution analysis Riesz bases Sobolev spaces 

Mathematics Subject Classifications (2000)

42C40 41A15 46B15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    de Boor, C., DeVore, R., Ron, A.: The structure of finitely generated shift-invariant subspaces in \(L_2({\rm I\!R}^d)\). J. Funct. Anal. 119, 37–78 (1994)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    de Boor, C., Fix, G.: Spline approximation by quasiinterpolants. J. Approx. Theory 8, 19–45 (1973)MATHCrossRefGoogle Scholar
  3. 3.
    Chui, C.K., Wang, J.Z.: On compactly supported spline wavelets and a duality principle. Trans. Amer. Math. Soc. 330, 903–916 (1992)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chui, C.K., Quak, E.: Wavelets on a bounded interval. In: Braess, D., Schumaker, L.L. (eds.) Numerical Methods in Approximation Theory, vol. 9, pp. 53–75. Birkhäuser, Basel (1992)Google Scholar
  5. 5.
    Goodman, T.N.T., Jia, R.Q., Micchelli, C.A.: On the spectral radius of a bi-infinite periodic and slanted matrix. Southeast Asian Bull. Math. 22, 115–134 (1998)MATHMathSciNetGoogle Scholar
  6. 6.
    Goodman, T.N.T., Micchelli, C.A.: On refinement equations determined by Pólya sequences. SIAM J. Math. Anal. 23, 766–784 (1992)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Han, B., Shen, Z.W.: Wavelets with short support. SIAM J. Math. Anal. 38, 530–556 (2006)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Jia, R.Q.: Approximation with scaled shift-invariant spaces by means of quasi-projection operators. J. Approx. Theory 131, 30–46 (2004)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Jia, R.Q.: Bessel sequences in Sobolev spaces. Appl. Comput. Harmon. Anal. 20, 298–311 (2006)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Jia, R.Q.: Stable bases of spline wavelets on the interval. In: Chen, G.R., Lai, M.J. (eds.) Wavelets and Splines, pp. 244–259. Nashboro, Brentwood (2006)Google Scholar
  11. 11.
    Jia, R.Q., Liu, S.T.: Wavelet bases of Hermite cubic splines on the interval. Adv. Comput. Math. 25, 23–39 (2006)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Jia, R.Q., Micchelli, C.A.: Using the refinement equations for the construction of pre-wavelets II: powers of two. In: Laurent, P.J., Le Méhauté, A., Schumaker, L.L. (eds.) Curves and Surfaces, pp. 209–246. Academic, New York (1991)Google Scholar
  13. 13.
    Jia, R.Q., Wang, J.Z., Zhou, D.X.: Compactly supported wavelet bases for Sobolev spaces. Appl. Comput. Harmon. Anal. 15, 224–241 (2003)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Micchelli, C.A.: Using the refinement equations for the construction of pre-wavelets. Numer. Algorithms 1, 75–116 (1991)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Micchelli, C.A.: Banded matrices with banded inverses. J. Comput. Appl. Math. 41, 281–300 (1992)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Schoenberg, I.J.: Cardinal Spline Interpolation. SIAM, Philadelphia (1973)MATHGoogle Scholar
  17. 17.
    Young, R.M.: An Introduction to Nonharmonic Fourier Series. Academic, New York (1980)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Department of Mathematical and Statistical SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations