Advances in Computational Mathematics

, Volume 30, Issue 2, pp 101–121 | Cite as

Numerical analysis of a strongly coupled system of two singularly perturbed convection–diffusion problems

  • Eugene O’Riordan
  • Martin Stynes


A system of two coupled singularly perturbed convection–diffusion ordinary differential equations is examined. The diffusion term in each equation is multiplied by a small parameter, and the equations are coupled through their convective terms. The problem does not satisfy a conventional maximum principle. Its solution is decomposed into regular and layer components. Bounds on the derivatives of these components are established that show explicitly their dependence on the small parameter. A numerical method consisting of simple upwinding and an appropriate piecewise-uniform Shishkin mesh is shown to generate numerical approximations that are essentially first order convergent, uniformly in the small parameter, to the true solution in the discrete maximum norm.


Singularly perturbed Convection–diffusion Coupled system Piecewise-uniform mesh 

Mathematics Subject Classifications (2000)

65L10 65L12 65L20 65L70 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abrahamsson, L.R., Keller, H.B., Kreiss, H.O.: Difference approximations for singular perturbations of systems of ordinary differential equations. Numer. Math. 22, 367–391 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bellew, S., O’Riordan, E.: A parameter robust numerical method for a system of two singularly perturbed convection–diffusion equations. Appl. Numer. Math. 51, 171–186 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Chang, K.W.: Singular perturbations of a boundary problem for a vector second order differential equation. SIAM J. Appl. Math. 30, 42–54 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Farrell, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Robust Computational Techniques for Boundary Layers. Chapman & Hall, Boca Raton (2000)zbMATHGoogle Scholar
  5. 5.
    Hemavathi, S., Bhuvaneswari, T., Valarmathi, S., Miller, J.J.H.: A parameter uniform numerical method for a system of singulary perturbed differential equations. Appl. Math. Comput. 191, 1–11 (2007)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Kokotović, P.V.: Applications of singular perturbation techniques to control problems. SIAM Rev. 26, 501–550 (1984)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Linß, T.: Layer-adapted meshes for convection–diffusion problems. Comput. Methods Appl. Mech. Engrg. 192, 1061–1105 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Linß, T.: On a set of singularly perturbed convection–diffusion equations. J. Comput. Appl. Math. 180, 173–179 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Linß, T.: On systems of singularly perturbed reaction–convection–diffusion equations. In: Farago I., Vabishchevich P., Vulkov, L. (eds) Finite Difference Methods: Theory and Applications I, pp. 115–124. Rousse University, Rousse, Bulgaria (2007)Google Scholar
  10. 10.
    Linß, T.: Analysis of a system of singularly perturbed convection–diffusion equations with strong coupling. MATH-NM-02-2007, Institut für Numerische Mathematik, Technische Universität Dresden (2007) (preprint)Google Scholar
  11. 11.
    O’Malley, Jr, R.E.: Singular perturbation methods for ordinary differential equations. In: Applied Mathematical Sciences, vol. 89. Springer, New York (1991)Google Scholar
  12. 12.
    Protter, M.H.,Weinberger, H.F.: Maximum Principles in Differential Equations. Springer, New York (1984)zbMATHGoogle Scholar
  13. 13.
    Roos, H.-G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly Perturbed Differential Equations, 2nd edn. Springer Series in Computational Mathematics. Springer, Berlin (2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  1. 1.School of Mathematical SciencesDublin City UniversityDublin 9Ireland
  2. 2.Department of MathematicsNational University of IrelandCorkIreland

Personalised recommendations