Advertisement

Advances in Computational Mathematics

, Volume 29, Issue 3, pp 249–268 | Cite as

The focal geometry of circular and conical meshes

  • Helmut PottmannEmail author
  • Johannes Wallner
Article

Abstract

Circular meshes are quadrilateral meshes all of whose faces possess a circumcircle, whereas conical meshes are planar quadrilateral meshes where the faces which meet in a vertex are tangent to a right circular cone. Both are amenable to geometric modeling – recently surface approximation and subdivision-like refinement processes have been studied. In this paper we extend the original defining property of conical meshes, namely the existence of face/face offset meshes at constant distance, to circular meshes. We study the close relation between circular and conical meshes, their vertex/vertex and face/face offsets, as well as their discrete normals and focal meshes. In particular we show how to construct a two-parameter family of circular (resp., conical) meshes from a given conical (resp., circular) mesh. We further discuss meshes which have both properties and their relation to discrete surfaces of negative Gaussian curvature. The offset properties of special quadrilateral meshes and the three-dimensional support structures derived from them are highly relevant for computational architectural design of freeform structures. Another aspect important for design is that both circular and conical meshes provide a discretization of the principal curvature lines of a smooth surface, so the mesh polylines represent principal features of the surface described by the mesh.

Keywords

Discrete differential geometry Architectural design Geometric modeling Integrable systems Quadrilateral meshes Conical meshes Circular meshes Offset meshes Focal meshes 

Mathematics Subject Classifications (2000)

68U05 53A40 52C99 51B15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blaschke, W.: Vorlesungen über Differentialgeometrie, vol. 3. Springer, Berlin (1929)Google Scholar
  2. 2.
    Bobenko, A.: Discrete conformal maps and surfaces. In: Symmetries and Integrability of Difference Equations. London Mathematical Society Lecture Note Series, vol. 255, pp. 97–108. Cambridge University Press, Cambridge (1999)Google Scholar
  3. 3.
    Bobenko, A., Hertrich-Jeromin, U.: Orthogonal nets and Clifford algebras. Tohoku Math. Publ. 20, 7–22 (2001)MathSciNetGoogle Scholar
  4. 4.
    Bobenko, A., Hoffmann, T., Springborn, B.: Minimal surfaces from circle patterns: geometry from combinatorics. Ann. of Math. 164, 231–264 (2006)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Bobenko, A., Pinkall, U.: Discrete isothermic surfaces. J. Reine Angew. Math. 475, 187–208 (1996)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Bobenko, A., Suris, Yu.: Discrete differential geometry. Consistency as integrability. (Preprint) (2005). http://arxiv.org/abs/math.DG/0504358
  7. 7.
    Bobenko, A., Suris, Yu.: On organizing principles of discrete differential geometry, geometry of spheres. Russian Math. Surveys 62, 1–43 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Cecil, T.: Lie Sphere Geometry. Springer, Berlin (1992)zbMATHGoogle Scholar
  9. 9.
    Cieśliński, J., Doliwa, A., Santini, P.M.: The integrable discrete analogues of orthogonal coordinate systems are multi-dimensional circular lattices. Phys. Lett. A 235, 480–488 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Desbrun, M., Grinspun, E., Schröder, P., Polthier, K., et al.: Discrete differential geometry. In: SIGGRAPH Course Notes, http://ddg.cs.columbia.edu (2006)
  11. 11.
    do Carmo, M.: Differential Geometry of Curves and Surfaces. Prentice-Hall, New Jersey (1976)zbMATHGoogle Scholar
  12. 12.
    Doliwa, A., Manakov, S.V., Santini, P.M.: \(\overline\partial\)-reductions of the multidimensional quadrilateral lattice. The multidimensional circular lattice. Comm. Math. Phys. 196, 1–18 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Doliwa, A., Santini, P.M.: Multidimensional quadrilateral lattices are integrable. Phys. Lett. A 233(4–6), 365–372 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Doliwa, A., Santini, P.M., Mañas, M.: Transformations of quadrilateral lattices. J. Math. Phys. 41, 944–990 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Hertrich-Jeromin, U.: Introduction to Möbius differential geometry. In: London Mathematical Society Lecture Note Series, vol. 300. Cambridge University Press, Cambridge (2003)Google Scholar
  16. 16.
    Konopelchenko, B.G., Schief, W.K.: Three-dimensional integrable lattices in Euclidean spaces: conjugacy and orthogonality. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454, 3075–3104 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Liu, Y., Pottmann, H., Wallner, J., Yang, Y., Wang, W.: Geometric modeling with conical meshes and developable surfaces. ACM Trans. Graph. 25(3), 681–689 (2006). In: Proc. SIGGRAPH 2006.CrossRefGoogle Scholar
  18. 18.
    Mañas, M., Doliwa, A., Santini, P.M.: Darboux transformations for multidimensional quadrilateral lattices. I. Phys. Lett., A 232, 99–105 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Martin, R.R., de Pont, J., Sharrock, T.J.: Cyclide surfaces in computer aided design. In: Gregory, J.A. (ed.) The Mathematics of Surfaces, pp. 253–268. Clarendon Press, Oxford (1986)Google Scholar
  20. 20.
    Porteous, I.R.: Geometric Differentiation for the Intelligence of Curves and Surfaces. Cambridge University Press, Cambridge (1994)zbMATHGoogle Scholar
  21. 21.
    Pottmann, H.: Generalized principal meshes and their support structures. Geometry preprint No. 158. Technische Universität Wien (2006)Google Scholar
  22. 22.
    Pottmann, H., Wallner, J.: Computational Line Geometry. Springer, Berlin (2001)zbMATHGoogle Scholar
  23. 23.
    Sauer, R.: Parallelogrammgitter als modelle pseudosphärischer Flächen. Math. Z. 52, 611–622 (1950)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Sauer, R.: Differenzengeometrie. Springer, Berlin (1970)zbMATHGoogle Scholar
  25. 25.
    Wallner, J., Pottmann, H.: Infinitesimally flexible meshes and discrete minimal surfaces. Monatsh. Math. (to appear)Google Scholar
  26. 26.
    Wang, W., Wallner, J., Liu, Y.: An angle criterion for conical mesh vertices. Geometry preprint No. 157 (2006). Technische Universität Wien. http://www.geometrie.tuwien.ac.at/ig/papers/tr157.pdf
  27. 27.
    Wunderlich, W.: Zur Differenzengeometrie der Flächen konstanter negativer Krümmung. Sitzungsber. - Osterr. Akad. Wiss. 160, 41–77 (1951)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Institut für Diskrete Mathematik und GeometrieTechnische Universität WienWienAustria

Personalised recommendations