Advances in Computational Mathematics

, Volume 27, Issue 4, pp 375–400 | Cite as

A non-linear circle-preserving subdivision scheme

  • Pavel ChalmovianskýEmail author
  • Bert Jüttler

We describe a new method for constructing a sequence of refined polygons, which starts with a sequence of points and associated normals. The newly generated points are sampled from circles which approximate adjacent points and the corresponding normals. By iterating the refinement procedure, we get a limit curve interpolating the data. We show that the limit curve is \(G^1\), and that it reproduces circles. The method is invariant with respect to group of Euclidean similarities (including rigid transformations and scaling). We also discuss an experimental setup for a \(G^2\) construction and various possible extensions of the method.


subdivision techniques fitting of algebraic curves 

Mathematics subject classification (2000)

65D17 68U05 53A04 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. Aspert, T. Ebrahimi and P. Vandergheynst, Non-linear subdivision using local spherical coordinates, Comput. Aided Geom. Des. 20(3) (2003) 165–187.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    N. Dyn and D. Levin, Subdivision schemes in geometric modeling, Acta Numer. (2002) 73–144.Google Scholar
  3. [3]
    B. Jüttler and U. Schwanecke, Analysis and design of Hermite subdivision schemes, Vis. Comput. 18 (2002) 326–342.CrossRefGoogle Scholar
  4. [4]
    S. Karbacher, S. Seeger and G. Häusler, A non-linear subdivision scheme for triangle meshes, in: Proceedings of the 2000 Conference on Vision Modeling and Visualization, eds. Bernd Girod et al. (Saarbrücken, 2000) pp. 163–170. Aka GmbH.Google Scholar
  5. [5]
    M.-S. Kim and K.-W. Nam, Interpolating solid orientations with circular blending quaternion curves, CAD 27(5) (1995) 385–398.zbMATHMathSciNetGoogle Scholar
  6. [6]
    F. Kuijt and R. van Damme, Shape preserving interpolatory subdivision schemes for nonuniform data, J. Approx. Theory 114(1) (2002) 1–32.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    J.L. Merrien, A family of Hermite interpolants by bisection algorithms, Numer. Algorithms (1992) 187–200.Google Scholar
  8. [8]
    G. Morin, J. Warren and H. Weimer, A subdivision scheme for surfaces of revolution, Comput. Aided Geom. Des. 18(5) (2001) 483–502.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    D.B. Parkinson and D.N. Moreton, Optimal biarc-curve fitting, CAD 23(6) (1991) 411–416.zbMATHGoogle Scholar
  10. [10]
    M. Sabin, A circle-preserving variant of the four-point subdivision scheme. Talk at the Sixth Int. Conference on Mathematical Methods for Curves and Surfaces, Tromsø 2004.Google Scholar
  11. [11]
    C.H. Séquin, K. Lee and J. Yen, Fair \(G^2\) and \(C^2\)-continuous circle splines for the interpolation of sparse data points, CAD 37 (2005) 201–211.Google Scholar
  12. [12]
    J. Wallner and N. Dyn, Convergence and \(C^1\) analysis of subdivision schemes on manifolds by proximity, Comp. Aided Geom. Des. 22(7) (2005) 593–622.Google Scholar
  13. [13]
    J. Warren, Subdivision Methods For Geometric Design: A Constructive Approach (Morgan Kaufmann, 2003).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Johann Radon Institute of Computational and Applied MathematicsAustrian Academy of ScienceLinzAustria
  2. 2.Institute of Applied GeometryJohannes Kepler UniversityLinzAustria

Personalised recommendations