Advances in Computational Mathematics

, Volume 28, Issue 1, pp 43–61 | Cite as

Finite element error analysis of a variational multiscale method for the Navier-Stokes equations

Article

The paper presents finite element error estimates of a variational multiscale method (VMS) for the incompressible Navier–Stokes equations. The constants in these estimates do not depend on the Reynolds number but on a reduced Reynolds number or on the mesh size of a coarse mesh.

Keywords

variational multiscale method finite element method error analysis incompressible Navier–Stokes equations 

Mathematics subject classifications (2000)

65M15 65M60 76F65 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.A. Adams, Sobolev Spaces (Academic, New York, 1975).MATHGoogle Scholar
  2. [2]
    I. Babuška and J. Osborn, Analysis of finite element methods for second order boundary value problems using mesh dependent norms, Numer. Math. 34 (1980) 41–62.CrossRefMathSciNetGoogle Scholar
  3. [3]
    L.C. Berselli, C.R. Grisanti and V. John, On commutation errors in the derivation of the space averaged Navier–Stokes equations, Preprint 12, Università di Pisa, Dipartimento di Matematica Applicata “U.Dini,” 2004.Google Scholar
  4. [4]
    L.C. Berselli and V. John, On the comparison of a commutation error and the Reynolds stress tensor for flows obeying a wall law, Preprint 18, Università di Pisa, Dipartimento di Matematica Applicata “U.Dini,” 2004.Google Scholar
  5. [5]
    S.S. Collis, Monitoring unresolved scales in multiscale turbulence modeling, Phys. Fluids 13 (2001) 1800–1806.CrossRefGoogle Scholar
  6. [6]
    A. Dunca, V. John and W.J. Layton, The commutation error of the space averaged Navier–Stokes equations on a bounded domain, in: Contributions to Current Challenges in Mathematical Fluid Mechanics, eds. J.G. Heywood, G.P. Galdi and R. Rannacher (Birkhäuser, 2004) pp. 53–78.Google Scholar
  7. [7]
    G.P. Galdi, An introduction to the Navier–Stokes initial-boundary value problem, in: Fundamental Directions in Mathematical Fluid Dynamics, eds. G.P. Galdi, J.G. Heywood and R. Rannacher (Birkhäuser, 2000) pp. 1–70.Google Scholar
  8. [8]
    V. Gravemeier, The variational multiscale method for laminar and turbulent incompressible flow, PhD thesis, Institute of Structural Mechanics, University of Stuttgart, 2003.Google Scholar
  9. [9]
    J.-L. Guermond, Stabilization of Galerkin approximations of transport equations by subgrid modeling, M2AN 33 (1999) 1293–1316.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    J.G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier–Stokes problem I: Regularity of solutions and second order error estimates for spatial discretization, SIAM J. Numer. Anal. 19 (1982) 275–311.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    J.G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier–Stokes problem III: Smoothing property and higher order estimates for spatial discretization, SIAM J. Num. Anal. 25 (1988) 489–512.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    T.J. Hughes, L. Mazzei and K.E. Jansen, Large eddy simulation and the variational multiscale method, Comput. Vis. Sci. 3 (2000) 47–59.MATHCrossRefGoogle Scholar
  13. [13]
    T.J.R. Hughes, Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid-scale models, bubbles and the origin of stabilized methods, Comput. Methods Appl. Mech. Eng. 127 (1995) 387–401.MATHCrossRefGoogle Scholar
  14. [14]
    V. John, Large Eddy Simulation of Turbulent Incompressible Flows. Analytical and Numerical Results for a Class of LES Models, volume 34 of Lecture Notes in Computational Science and Engineering, (Springer, Berlin Heidelberg New York, 2004).Google Scholar
  15. [15]
    V. John and S. Kaya, A finite element variational multiscale method for the Navier–Stokes equations, SIAM J. Sci. Comput. 26 (2005) 1485–1503.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    V. John, S. Kaya and W. Layton, A two-level variational multiscale method for convection–diffusion equations, Comp. Meth. Appl. Math. Engrg. (2006) in press.Google Scholar
  17. [17]
    V. John and W.J. Layton, Analysis of numerical errors in large eddy simulation, SIAM J. Numer. Anal. 40 (2002) 995–1020.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    W. Layton and W. Lenferink, A multilevel mesh independence principle for the Navier–Stokes equations, SIAM J. Numer. Anal. 33 (1996) 17–30.MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    W. Layton and L. Tobiska, A two-level method with backtracking for the Navier–Stokes equations, SIAM J. Numer. Anal. 35(5) (1998) 2035–2054.MATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    P. Sagaut, Large Eddy Simulation for Incompressible Flows, 2nd edition (Springer, Berlin Heidelberg New York, 2003).Google Scholar
  21. [21]
    H. Sohr, The Navier-Stokes Equations, An Elementary Functional Analytic Approach. Birhäuser Advanced Texts (Birkhäuser Verlag Basel, Boston, Berlin, 2001).Google Scholar
  22. [22]
    R. Temam, Navier–Stokes Equations. Theory and Numerical Analysis, volume 2 of Studies in Mathematics and Its Applications (North-Holland, Amsterdam, New York, Oxford, 1977).Google Scholar
  23. [23]
    F. van der Bos and B.J. Geurts, Commutator erros in the filtering approach to large-eddy simulation, Phys. Fluids 17 (2005) 035108.CrossRefMathSciNetGoogle Scholar
  24. [24]
    J. Xu, A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comput. 15(1) (1994) 231–237.MATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    J. Xu, Two-grid finite element discretizations for nonlinear p.d.e.’s, SIAM J. Numer. Anal. 33(5) (1996) 1759–1777.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.FR 6.1 – MathematikUniversität des SaarlandesSaarbrückenGermany
  2. 2.Department of MathematicsMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations