Advertisement

Advances in Computational Mathematics

, Volume 27, Issue 3, pp 339–354 | Cite as

A degenerate kernel method for eigenvalue problems of compact integral operators

  • N. GnaneshwarEmail author
Article

We consider the approximation of eigenfunctions of a compact integral operator with a smooth kernel by a degenerate kernel method. By interpolating the kernel of the integral operator in both the variables, we prove that the error bounds for eigenvalues and for the distance between the spectral subspaces are of the orders h 2r and h r respectively. By iterating the eigenfunctions we show that the error bounds for eigenfunctions are of the orders h 2r . We give the numerical results.

Keywords

convergence rates degenerate kernel eigenvalue problem integral operator 

Mathematics subject classification (2000)

45C05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Ahues, A. Largillier and B.V. Limaye, Spectral Computations for Bounded Operators (Chapman and Hall/CRC, New York, 2001).zbMATHGoogle Scholar
  2. [2]
    K.E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind (Cambridge University Press, Cambridge, UK, 1997).zbMATHGoogle Scholar
  3. [3]
    F. Chatelin, Spectral Approximation of Linear Operators (Academic Press, New York, 1983).zbMATHGoogle Scholar
  4. [4]
    E.W. Cheney, Multivariate approximation theory: Selected topics, CBMS-NSF 51, regional series in applied math, SIAM (1986).Google Scholar
  5. [5]
    E. Schafer, Spectral approximation for compact integral operators by degenerate kernel methods, Numer. Funct. Anal. Optim. 2 (1980) 43–63.CrossRefGoogle Scholar
  6. [6]
    I. Graham, S. Joe and I.H. Sloan, Iterated Galerkin versus iterated collocation for integral equations of the second kind, IMA, J. Numer. Anal. 5 (1985) 355–369.zbMATHCrossRefGoogle Scholar
  7. [7]
    N. Gnaneshwar, Spectral approximation for integral operators, Ph.d thesis, Indian Institute of Technology, Bombay, India, 2003.Google Scholar
  8. [8]
    H. Kaneko, P. Padila and Y. Xu, Superconvergence of the iterated degenerate kernel method, Appl. Anal. 80(3) (2002) 331–351.CrossRefGoogle Scholar
  9. [9]
    H. Kaneko and Y. Xu, Degenerate kernel method for Hammerstein equations, Math. Comput. 56(193) (1991) 141–148.zbMATHCrossRefGoogle Scholar
  10. [10]
    R.P. Kulkarni and N. Gnaneshwar, Spectral approximation using iterated discrete Galerkin method, Numer. Funct. Anal. Optim. 23(1 & 2) (2002) 91–104.CrossRefGoogle Scholar
  11. [11]
    R.P. Kulkarni and N. Gnaneshwar, Iterated discrete polynomially based discrete Galerkin methods, Appl. Math. Comput. 146 (2003) 153–165.zbMATHCrossRefGoogle Scholar
  12. [12]
    R.P. Kulkarni and N. Gnaneshwar, Spectral refinement using a new projection method, ANZIAMJ. 46 (2004) 203–224.zbMATHGoogle Scholar
  13. [13]
    J.E. Osborn, Spectral approximation for compact operators, Math. Comput. 29 (1975) 712–725.zbMATHCrossRefGoogle Scholar
  14. [14]
    L.L. Schumaker, Spline Fuctions: Basic Theory (Wiley, New York, 1981).zbMATHGoogle Scholar
  15. [15]
    I.H. Sloan, Iterated Galerkin method for eigenvalue problems, SIAM J. Numer. Anal. 13 (1976) 753–760.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of ScienceBangloreIndia
  2. 2.Department of Scientific Computing and Computer Applications, School of Mathematics and Computing ScienceSun Yat-sen (Zhongshan) UniversityGuangzhouPR China

Personalised recommendations