Advances in Computational Mathematics

, Volume 26, Issue 4, pp 473–496 | Cite as

Error analysis of spectral method on a triangle

  • Ben-yu Guo
  • Li-Lian Wang


In this paper, the orthogonal polynomial approximation on triangle, proposed by Dubiner, is studied. Some approximation results are established in certain non-uniformly Jacobi-weighted Sobolev space, which play important role in numerical analysis of spectral and triangle spectral element methods for differential equations on complex geometries. As an example, a model problem is considered.


spectral method on triangle convergence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Appell and J. Kampé de Fériet, Functions hypergéométriques et hyperspheriques-polynomes d'Hermite (Gauthier-Villars, Paris, 1926). Google Scholar
  2. [2]
    I. Babuška and B.Q. Guo, Optimal estimates for lower and upper bounds of approximation errors in the p-version of the finite element method in two-dimensions, Numer. Math. 85 (2000) 219–255. MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    I. Babuška and B.Q. Guo, Direct and inverse approximation theorems for the p-version of the finite element method in the framework of weighted Besov spacecs, part I, approximability of functions in weighted Besov spaces, SIAM J. Numer. Anal. 39 (2001) 1512–1538. MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    C. Bernardi and Y. Maday, Spectral method, in: Handbook of Numerical Analysis, Part 5, eds. P.G. Ciarlet and J.L. Lions (North-Holland, Amsterdam, 1977). Google Scholar
  5. [5]
    W. Cai, High-order mixed current bais functions for electromagnetic scattering of curve surface, J. Sci. Comput. 14 (1999) 73–105. zbMATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    C. Canuto and A. Quarteroni, Approximation results for orthogonal polynomials in Sobolev spaces, Math. Comp. 38 (1982) 67–86. zbMATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    M. Dubiner, Spectral methods on triangles and other domains, J. Sci. Comput. 6 (1991) 345–390. zbMATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    C.F. Dunkl and Y. Xu, Orthogonal Polynomials of Several Variables (Cambridge Univ. Press, Cambridge, 2001). zbMATHGoogle Scholar
  9. [9]
    D. Funaro, Pseudospectral approximation of a PDE defined on a triangle, Appl. Math. Comput. 42 (1991) 121–138. zbMATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    D. Funaro, Polynomial Approximations of Differential Equations (Springer-Verlag, Berlin, 1992). Google Scholar
  11. [11]
    B.-y. Guo, Jacobi approximations in certain Hilbert spaces and their applications to singular differential equations, J. Math. Anal. Appl. 243 (2000) 373–408. zbMATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    B.-y. Guo and L.-L. Wang, Non-isotropic Jacobi spectral method, in: Contemporary Mathematics, Vol. 329 (Amer. Math. Soc., Providence, RI, 2003) pp. 157–169. Google Scholar
  13. [13]
    G.H. Hardy, J.E. Littlewood and G. Pólya, Inequalities (Cambridge Univ. Press, Cambridge, 1952). zbMATHGoogle Scholar
  14. [14]
    W. Heinrichs, Spectral collocation on triangular elements, J. Comput. Phys. 145 (1998) 743–757. zbMATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    J.S. Hesthaven and D. Gottlieb, Stable spectral methods for conservation law on triangles with unstructured grids, Comput. Methods Appl. Mech. Engrg. 175 (1999) 361–381. zbMATHMathSciNetCrossRefGoogle Scholar
  16. [16]
    G.E. Karniadakis and S.J. Sherwin, Spectral/hp Element Methods for CFD (Oxford Univ. Press, Oxford, 1999). zbMATHGoogle Scholar
  17. [17]
    R.G. Owens, Spectral Approximation on the triangle, Proc. Roy. Soc. London A 454 (1998) 857–872. zbMATHMathSciNetCrossRefGoogle Scholar
  18. [18]
    S.J. Sherwin and G.E. Farniadakis, A new triangular and tetrahedral basis for high-order finite element methods, Internat. J. Numer. Methods Engrg. 38 (1995) 3775–3802. zbMATHMathSciNetCrossRefGoogle Scholar
  19. [19]
    S.J. Sherwin and G.E. Farniadakis, A triangular spetral element method: applications to the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. 123 (1995) 189–229. zbMATHMathSciNetCrossRefGoogle Scholar
  20. [20]
    G. Szegö, Othogonal Polynomials, Vol. 23, 4th edn. (AWS Coll. Publ., 1975). Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of MathematicsShanghai Normal UniversityShanghaiChina
  2. 2.Division of Computational Science of E-institute of Shanghai UniversitiesShanghaiChina
  3. 3.Department of MathematicsNan yang Technology UniversitySingapore

Personalised recommendations