Advances in Computational Mathematics

, Volume 25, Issue 1–3, pp 287–304 | Cite as

An algebraic multigrid method for finite element systems on criss-cross grids

  • Shi Shu
  • Jinchao Xu
  • Ying Yang
  • Haiyuan Yu
Article

Abstract

In this paper, we design and analyze an algebraic multigrid method for a condensed finite element system on criss-cross grids and then provide a convergence analysis. Criss-cross grid finite element systems represent a large class of finite element systems that can be reduced to a smaller system by first eliminating certain degrees of freedoms. The algebraic multigrid method that we construct is analogous to many other algebraic multigrid methods for more complicated problems such as unstructured grids, but, because of the specialty of our problem, we are able to provide a rigorous convergence analysis to our algebraic multigrid method.

Keywords

algebraic multigrid method finite element criss-cross grids convergence analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D.N. Arnold and J. Qin, Quadratic velocity/linear pressure stokes element, in: Advances in Computer Methods for Partial Differential Equations, Vol. VII, eds. G. Richter, R. Vichnevetsky and D. Knight (IMACS, 1992). Google Scholar
  2. [2]
    I.M. Babuska, FEM-Latest Developments, Open Problems and Perspectives, Internat. Colloquium on Applications of Computer Science and Mathematics in Architecture and Civil Engineering, Weimar, Germany (26 February–1 March, 1997). Google Scholar
  3. [3]
    R. Bank and J. Xu, An algorithm for coarsening unstructured meshes, Numer. Math. 73(1) (1996) 1–36. MathSciNetCrossRefGoogle Scholar
  4. [4]
    J.H. Bramble, J.E. Pasciak, J. Wang and J. Xu, Convergence estimates for multigrid algorithms without regularity assumptions, Math. Comp. 57(195) (1991) 23–45. MathSciNetCrossRefGoogle Scholar
  5. [5]
    A. Brandt, Multiscale scientific computation, Six year research summary (1999). Google Scholar
  6. [6]
    A. Brandt, S.F. McCormick and J.W. Ruge, Algebraic multigrid (AMG) for sparse matrix equations, in: Sparsity and Its Applications, ed. D.J. Evans (Cambridge Univ. Press, Cambridge, 1984). Google Scholar
  7. [7]
    M. Brezina, A.J. Cleary, R.D. Falgout, V.E. Henson, J.E. Jones, T.A. Manteuffel, S.F. McCormick and J.W. Ruge, Algebraic multigrid based on element interpolation (AMGe), SIAM J. Sci. Comput. 22(5) (2000) 1570–1592 (electronic). MathSciNetCrossRefGoogle Scholar
  8. [8]
    F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods (Spinger, New York, 1991). Google Scholar
  9. [9]
    T.F. Chan, J. Xu and L. Zikatanov, An agglomeration multigrid method for unstructured grids, in: 10th Internat. Conf. on Domain Decomposition Methods, Contemporary Mathematics, Vol. 218 (Birkhäuser, Boston, 1998) pp. 67–81. Google Scholar
  10. [10]
    P.M. de Zeeuw, Matrix-dependent prolongations and restrictions in a black box multigrid solver, J. Comput. Appl. Math. 33 (1990) 1–27. MATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    J.E. Dendy, Black box multigrid, J. Comput. Phys. 48 (1982) 366–386. MATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    Y.R. Efendiev, T.Y. Hou and Z.-H. Wu, Convergence of a nonconforming multiscale finite element method, SIAM J. Numer. Anal. 37(3) (2000) 888–910 (electronic). MathSciNetCrossRefGoogle Scholar
  13. [13]
    J. Mandel, M. Brezina and P. Vanĕk, Energy optimization of algebraic multigrid bases, Computing 62(3) (1999) 205–228. MathSciNetCrossRefGoogle Scholar
  14. [14]
    J. Ruge and K. Stüben, Algebraic multigrid, in: Multigrid Methods, ed. S. McCormick (SIAM, Philadelphia, PA, 1987). Google Scholar
  15. [15]
    K. Stüben, A review of algebraic multigrid, GMD Report 69 (1999). Google Scholar
  16. [16]
    P. Vanek, J. Mandel and M. Brezina, Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems, Computing 56(3) (1996) 179–196. MathSciNetCrossRefGoogle Scholar
  17. [17]
    P. Vanek, M. Brezina and J. Mandel, Convergence of algebraic multigrid based on smoothed aggregation, Numer. Math. 88(3) (2001) 559–579. MathSciNetCrossRefGoogle Scholar
  18. [18]
    W.L. Wan, T.F. Chan and B. Smith, An energy-minimizing interpolation for robust multigrid methods, SIAM J. Sci. Comput. 21(3) (2000) 559–579. MathSciNetGoogle Scholar
  19. [19]
    J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev. 34 (1992) 581–613. MATHMathSciNetCrossRefGoogle Scholar
  20. [20]
    J. Xu and L. Zikatanov, The method of alternating projections and the method of subspace corrections on Hilbert space, J. Amer. Math. Soc. 15 (2002) 1429–1446. MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Shi Shu
    • 1
  • Jinchao Xu
    • 2
  • Ying Yang
    • 3
  • Haiyuan Yu
    • 1
  1. 1.Institute for Computational and Applied Mathematics of Xiangtan UniversityChina
  2. 2.Department of Mathematics and Center for Computational Mathematics and Application of Pennsylvania State UniversityUSA
  3. 3.Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and System Sciences, Chinese Academy of SciencesChina

Personalised recommendations