Advances in Computational Mathematics

, Volume 23, Issue 4, pp 393–414 | Cite as

Intertwining unisolvent arrays for multivariate Lagrange interpolation

  • Jean-Paul CalviEmail author


Generalizing a classical idea of Biermann, we study a way of constructing a unisolvent array for Lagrange interpolation in Cn+m out of two suitably ordered unisolvent arrays respectively in Cn and Cm. For this new array, important objects of Lagrange interpolation theory (fundamental Lagrange polynomials, Newton polynomials, divided difference operator, vandermondian, etc.) are computed.


multivariate polynomials Lagrange interpolation unisolvent arrays 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    O. Bierman, Über näherungsweise kubaturen, Monaths. Math. Phys. 14 (1903) 211–225. Google Scholar
  2. [2]
    T. Bloom, L. Bos, C. Christensen and N. Levenberg, Polynomial interpolation of holomorphic function in C and Cn, Rocky Mountain J. Math. 22 (1992) 441–470. CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    T. Bloom and N. Levenberg, Lagrange interpolation of entire functions in C2, New Zealand J. Math. 22(2) (1993) 65–73. zbMATHMathSciNetGoogle Scholar
  4. [4]
    L. Bos, On certain configurations of points in Rn which are unisolvent for polynomial interpolation, J. Approx. Theory 64 (1991) 271–280. zbMATHMathSciNetGoogle Scholar
  5. [5]
    L. Bos, Personal communication. Google Scholar
  6. [6]
    K.C. Chung and T.H. Yao, On lattices admitting unique Lagrange interpolations, SIAM J. Numer. Anal. 14(4) (1977) 735–743. zbMATHMathSciNetGoogle Scholar
  7. [7]
    D. Cox, J. Little and D. O’Shea, Ideal, Varieties, and Algorithms (Springer, New York, 1992). Google Scholar
  8. [8]
    T. Sauer and Y. Xu, On multivariate Lagrange interpolation, Math. Comp. 64 (1995) 1147–1170. zbMATHMathSciNetGoogle Scholar
  9. [9]
    T. Sauer and Y. Xu, Regular points for Lagrange interpolations on the unit disk, Numer. Algorithms 12 (1996) 287–296. zbMATHMathSciNetGoogle Scholar
  10. [10]
    J. Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105(2) (1962) 322–357. zbMATHMathSciNetGoogle Scholar
  11. [11]
    D.D. Stancu, Use of Biermann’s interpolation formula for constructing a class of positive linear operator for approximating multivariate functions, in: Constructive Theory of Functions of Several Variables, Lecture Notes in Mathematics, Vol. 571 (Spinger, Berlin, 1977). Google Scholar
  12. [12]
    J.F. Steffensen, Interpolation (Chelsea Publishing Company, New York, 1950). zbMATHGoogle Scholar
  13. [13]
    R.J. Walker, Algebraic Curves (Princeton Univ. Press, Princeton, 1950). zbMATHGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques E. PicardUniversité Paul SabatierToulouse Cedex 4France

Personalised recommendations