Wavelet bases of Hermite cubic splines on the interval

  • Rong-Qing Jia
  • Song-Tao Liu


In this paper a pair of wavelets are constructed on the basis of Hermite cubic splines. These wavelets are in C1 and supported on [−1,1]. Moreover, one wavelet is symmetric, and the other is antisymmetric. These spline wavelets are then adapted to the interval [0,1]. The construction of boundary wavelets is remarkably simple. Furthermore, global stability of the wavelet basis is established. The wavelet basis is used to solve the Sturm–Liouville equation with the Dirichlet boundary condition. Numerical examples are provided. The computational results demonstrate the advantage of the wavelet basis.


wavelets on the interval Hermite cubic splines numerical solutions of differential equations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.H. Bramble, J.E. Pasciak and J.C. Xu, Parallel multilevel preconditioners, Math. Comp. 55 (1990) 1–22. MathSciNetCrossRefGoogle Scholar
  2. [2]
    S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods (Springer, New York, 1994). Google Scholar
  3. [3]
    Z. Chen, C.A. Micchelli and Y. Xu, Discrete wavelet Petrov–Galerkin methods, Adv. Comput. Math. 16 (2002) 1–28. MathSciNetCrossRefGoogle Scholar
  4. [4]
    C.K. Chui and E. Quak, Wavelets on a bounded interval, in: Numerical Methods in Approximation Theory, Vol. 9, eds. D. Braess and L.L. Schumaker (Birkhäuser, Basel, 1992) pp. 53–75. Google Scholar
  5. [5]
    C.K. Chui and J.Z. Wang, On compactly supported wavelets and a duality principle, Trans. Amer. Math. Soc. 330 (1992) 903–916. MathSciNetCrossRefGoogle Scholar
  6. [6]
    P.G. Ciarlet, Introduction to Numerical Linear Algebra and Optimisation (Cambridge Univ. Press, Cambridge, 1989). Google Scholar
  7. [7]
    A. Cohen, I. Daubechies, and P. Vial, Wavelets on the interval and fast wavelet transforms, Appl. Comput. Harmonic Anal. 1 (1993) 54–81. MathSciNetCrossRefGoogle Scholar
  8. [8]
    W. Dahmen, B. Han, R.Q. Jia and A. Kunoth, Biorthogonal multiwavelets on the interval: Cubic Hermite splines, Constr. Approx. 16 (2000) 221–259. MathSciNetCrossRefGoogle Scholar
  9. [9]
    I. Daubechies, Ten Lectures on Wavelets (SIAM, Philadelphia, PA, 1992). Google Scholar
  10. [10]
    G. Donovan, J.S. Geronimo, D.P. Hardin and P.R. Massopust, Construction of orthogonal wavelets using fractal interpolation functions, SIAM J. Math. Anal. 27 (1996) 1158–1192. MathSciNetCrossRefGoogle Scholar
  11. [11]
    C. Heil, G. Strang and V. Strela, Approximation by translates of refinable functions, Numer. Math. 73 (1996) 75–94. MathSciNetCrossRefGoogle Scholar
  12. [12]
    R.Q. Jia and C.A. Micchelli, Using the refinement equations for the construction of pre-wavelets II: Powers of two, in: Curves and Surfaces, eds. P.J. Laurent, A. Le Méhauté and L.L. Schumaker (Academic Press, New York, 1991) pp. 209–246. Google Scholar
  13. [13]
    Y.J. Shen and W. Lin, A wavelet-Gelerkin method for a linear equation system with Hadamard integrals, manuscript. Google Scholar
  14. [14]
    J.Z. Wang, Cubic spline wavelet bases of Sobolev spaces and multilevel interpolation, Appl. Comput. Harmonic Anal. 3 (1996) 154–163. zbMATHCrossRefGoogle Scholar
  15. [15]
    J.-C. Xu and W.C. Shann, Galerkin-wavelet methods for two-point boundary value problems, Numer. Math. 63 (1992) 123–144. MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Rong-Qing Jia
    • 1
  • Song-Tao Liu
    • 1
  1. 1.Department of Math. and Stat. SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations