Three-Dimensional Numerical Simulation of Meso-Scale-Void Formation during the Mold-Filling Process of LCM

  • Chunyang Zhao
  • Bo YangEmail author
  • Shilong Wang
  • Chi Ma
  • Sibao Wang
  • Fengyang Bi


Voids formed during liquid composite molding significantly degenerates mechanical performances of the final products, accurate prediction of the formation and size of void has significance for the parameter design of LCM. However, the 3D simulation method of void formation, in which the complex interconnecting of pores can be fully considered, has not been developed. In order to analyze the meso-scale-void formation process in full dimensionality, the mechanisms of dual-scale flow and void formation are analyzed firstly in this paper, then the mathematical models for the two-phase inter-tow and intra-tow flow are established based on the VOF theory. During numerical solving, the 3D geometry model is used and the momentum source of capillary force is updated in real-time to guarantee the simulation accuracy. The simulated formation process and size of meso-scale-void are compared with experimental results to verify the effectiveness and correctness of the developed method.


Liquid composite moulding Mold-filling Void formation Numerical simulation 



The presented work was supported by the National Natural Science Foundation of China (grant number 51605057, 51575139); the Fundamental and Frontier Research Project of Chongqing (grant number cstc2016jcyjA0456); the Fundamental Research Funds for the Central Universities (grant number 2018CDQYJX0013); the Postdoctoral Foundation Project of Chongqing (grant number Xm2016058).


  1. 1.
    Liu, B., Bickerton, S., Advani, S.G.: Modelling and simulation of resin transfer moulding (RTM)- gate control, venting and dry spot prediction. Composite Part A. 27(2), 135–141 (1996)CrossRefGoogle Scholar
  2. 2.
    Han, K., Lee, L.J.: Dry spot formation and changes in liquid composite molding: I- experimental. J. Compos. Mater. 30, 1458–1474 (1996)CrossRefGoogle Scholar
  3. 3.
    Han, K., Lee, L.J., Nakamura, S., Shafi, A., White, D.: Dry spot formation and changes in liquid composite molding: II- modeling and simulation. J. Compos. Mater. 30(13), 1475–1493 (1996)CrossRefGoogle Scholar
  4. 4.
    Rohatgi, V., Patel, N., Lee, L.J.: Experimental investigation of flow induced microvoids during impregnation of unidirectional stitched fiberglass mat. Polym. Compos. 17(2), 161–170 (1996)CrossRefGoogle Scholar
  5. 5.
    Patel, N., Rohatgi, V., Lee, L.J.: Micro scale flow behavior and void formation mechanism during impregnation through a unidirectional stitched fiberglass mat. Polym. Eng. Sci. 35(10), 837–851 (1995)CrossRefGoogle Scholar
  6. 6.
    Park, C.H., Lee, W.I.: Modeling void formation and unsaturated flow in liquid composite molding processes: a survey and review. J. Reinf. Plast. Compos. 30(11), 957–977 (2011)CrossRefGoogle Scholar
  7. 7.
    Yoshida, H.T., Ogasa, T., Hayashi, R.: Statistical approach to the relationship between ILSS and void content of CFRP. Compos. Sci. Technol. 25, 3–18 (1986)CrossRefGoogle Scholar
  8. 8.
    Harper, B.D., Staab, G.H., Chen, R.S.: A note on the effects of voids upon the hygral and mechanical properties of AS4/3502 graphite/epoxy. J. Compos. Mater. 21, 281–289 (1987)Google Scholar
  9. 9.
    Bowles, K.J., Frimpong, S.: Void effects on the interlaminar shear strength of unidirectional graphite-fibre-reinforced composites. J. Compos. Mater. 26(10), 1487–1509 (1992)CrossRefGoogle Scholar
  10. 10.
    Olivier, P., Cottu, J.P., Ferret, B.: Effects of cure cycle pressure and voids on some mechanical properties of carbon/epoxy laminates. Composites. 26, 509–515 (1995)CrossRefGoogle Scholar
  11. 11.
    Madsen, B., Lilholt, H.: Physical and mechanical properties of unidirectional plant fibre composites- an evaluation of the influence of porosity. Compos. Sci. Technol. 63, 1265–1272 (2003)CrossRefGoogle Scholar
  12. 12.
    Park, C.H., Lebel, A., Saouab, A., Bréard, J., Lee, W.I.: Modeling and simulation of voids and saturation in liquid composite molding processes. Composites Part A. 42, 658–668 (2011)CrossRefGoogle Scholar
  13. 13.
    Mahale, A.D., Prud'homme, R.K., Rebenfeld, L.: Quantitative measurement of voids formed during liquid impregnation of nonwoven multifilament glass networks using an optical visualization technique. Polym. Eng. Sci. 32(5), 319–326 (1992)CrossRefGoogle Scholar
  14. 14.
    Lundstrom, T.S., Gebart, B.R., Lundemo, C.Y.: Void formation in RTM. J. Reinf. Plast. Compos. 12, 1339–1349 (1993)CrossRefGoogle Scholar
  15. 15.
    Lundstrom, T.S., Gebart, B.R.: Influence from process parameters on void formation in RTM. Polym. Compos. 15(1), 25–33 (1994)CrossRefGoogle Scholar
  16. 16.
    Patel, N., Lee, L.J.: Effects of fiber mat architecture on void formation and removal in liquid composite molding. Polym. Compos. 16(5), 386–399 (1995)CrossRefGoogle Scholar
  17. 17.
    Kedari, V.R., Farah, B.I., Hsiao, K.T.: Effects of vacuum pressure, inlet pressure, and mold temperature on the void content, volume fraction of polyester/e-glass fiber composites manufactured with VARTM process. J. Compos. Mater. 45(26), 2727–2742 (2011)CrossRefGoogle Scholar
  18. 18.
    Matsuzaki, R., Seto, D., Todoroki, A., Mizutani, Y.: Void formation in geometry anisotropic woven fabrics in resin transfer molding. Adv. Compos. Mater. 23(2), 99–114 (2014)CrossRefGoogle Scholar
  19. 19.
    Ruiz, E., Achim, V., Soukane, S., Trochu, F., Bréard, J.: Optimization of injection flow rate to minimize micro/macro-voids formation in resin transfer molded composites. Composites Part A. 66(3–4), 475–486 (2006)Google Scholar
  20. 20.
    Leclerc, J.S., Ruiz, E.: Porosity reduction using optimized flow velocity in resin transfer molding. Composites Part A. 39(12), 1859–1868 (2008)CrossRefGoogle Scholar
  21. 21.
    LeBel, F., Fanaei, A.E., Ruiz, É., Trochu, F.: Prediction of optimal flow front velocity to minimize void formation in dual scale fibrous reinforcements. Int. J. Mater. Form. 7, 93–116 (2014)CrossRefGoogle Scholar
  22. 22.
    Ravey, C., Ruiz, E., Trochu, F.: Determination of the optimal impregnation velocity in resin transfer molding by capillary rise experiments and infrared thermography. Compos. Sci. Technol. 99, 96–102 (2014)CrossRefGoogle Scholar
  23. 23.
    Kang, M.K., Lee, W.I., Hahn, H.T.: Formation of microvoids during resin-transfer molding process. Compos. Sci. Technol. 60, 2427–2434 (2000)CrossRefGoogle Scholar
  24. 24.
    Lee, D.H., Lee, W.I., Kang, M.K.: Analysis and minimization of void formation during resin transfer molding process. Compos. Sci. Technol. 66, 3281–3289 (2006)CrossRefGoogle Scholar
  25. 25.
    Gourichon, B., Binetruy, C., Krawczak, P.: A new numerical procedure to predict dynamic void content in liquid composite molding. Composite Part A. 37(11), 1961–1969 (2006)CrossRefGoogle Scholar
  26. 26.
    Gourichon, B., Deléglise, M., Binetruy, C., Krawczak, P.: Dynamic void content prediction during radial injection in liquid composite molding. Composite Part A. 39, 46–55 (2008)CrossRefGoogle Scholar
  27. 27.
    Schell, J.S.U., Deleglise, M., Binetruy, C., Krawczak, P., Ermanni, P.: Numerical prediction and experimental characterisation of meso-scale- voids in liquid composite moulding. Composite Part A. 38, 2460–2470 (2007)CrossRefGoogle Scholar
  28. 28.
    Yang, B., Jin, T., Bi, F., Wei, Y., Li, J.: Influence of fabric shear and flow direction on void formation during resin transfer molding. Composite Part A. 68, 10–18 (2015)CrossRefGoogle Scholar
  29. 29.
    Matuzaki, R., Seto, D., Naito, M., Todoroki, A., Mizutani, Y.: Analytical prediction of void formation in geometrically anisotropic woven fabrics during resin transfer molding. Compos. Sci. Technol. 107, 154–161 (2015)CrossRefGoogle Scholar
  30. 30.
    Matuzaki, R., Naito, M., Seto, D., Todoroki, A., Mizutani, Y.: Analytical prediction of void distribution and a minimum-void angle in anisotropic fabrics for radial injection resin transfer molding. Express Polym Lett. 10(10), 860–872 (2016)CrossRefGoogle Scholar
  31. 31.
    Chang, C.Y., Shih, M.S.: Numerical simulation on the void distribution in the Fiber Mats during the filling stage of RTM. J. Reinf. Plast. Compos. 22, 1437–1454 (2003)CrossRefGoogle Scholar
  32. 32.
    Hu, J.L., Liu, Y., Shao, X.M.: Study on void formation in multi-layer woven fabrics. Composite Part A. 35, 595–603 (2004)CrossRefGoogle Scholar
  33. 33.
    DeValve, C., Pitchumani, R.: Simulation of void formation in liquid composite molding processes. Composite Part A. 51, 22–32 (2013)CrossRefGoogle Scholar
  34. 34.
    Arcila, I.D.P., Power, H., Londono, C.N., Escobar, W.F.F.: Boundary element simulation of void formation in fibrous reinforcements based on the stokes-Darcy formulation. Comput. Methods Appl. Mech. Eng. 304, 265–293 (2016)CrossRefGoogle Scholar
  35. 35.
    Hirt, C.W., Nichols, B.D.: Volum-of-fluid(VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)CrossRefGoogle Scholar
  36. 36.
    Gebart, B.R.: Permeability of unidirectional reinforcements for RTM [J]. J. Compos. Mater. 26(8), 1100–1133 (1992)CrossRefGoogle Scholar
  37. 37.
    Zhang, Y.W., Faghri, A.: Numerical simulation of condensation on a capillary grooved surface. Numer. Heat Transfer, Part A Appl. 39(3), 227–243 (2001)CrossRefGoogle Scholar
  38. 38.
    Young, W.B.: The effect of surface tension on tow impregnation of unidirectional fibrous perform in resin transfer molding [J]. J. Compos. Mater. 30(11), 1191–1209 (1996)CrossRefGoogle Scholar
  39. 39.
    Foley, M.E., Gillespie, J.W.: Modeling the effect of fiber diameter and fiber bundle count on tow impregnation during liquid molding processes [J]. J. Compos. Mater. 39(12), 1045–1065 (2005)CrossRefGoogle Scholar
  40. 40.
    Yang, B., Jin, T.L., Zheng, L.: Permeability prediction for textile preform with micro-meso dual-scale unit cell. Acta Materiae Compositae Sin. 30(5), 209–217 (2013) (In Chinese)Google Scholar
  41. 41.
    Lomov, S.V., Verpoest, I., Peeters, T., Roose, D., Zako, M.: Nesting in textile laminates: geometrical modelling of the laminate. Compos. Sci. Technol. 63(7), 993–1007 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Mechatronics EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.State Key Laboratory of Mechanical TransmissionChongqing UniversityChongqingChina
  3. 3.School of Mechatronics EngineeringHeilongjiang Institute of TechnologyHarbinChina

Personalised recommendations