Simulation of Low Velocity Impact on CFRP Aerospace Structures: Simplified Approaches, Numerical and Experimental Results

  • V. Prentzias
  • G. J. Tsamasphyros


This paper presents a study of low velocity impact on unidirectional composite specimens, a plate and an aerospace stiffened panel following the building block approach. Simplified approaches for a quick estimation of impact behavior description are used to define the impact dynamic response and the existence of delamination at coupon level, while numerical analysis models using ABAQUS/Explicit software and experimental results are described in detail and compared at all levels. Significant effort was made in the use of different types of elements and damage models for matrix cracking, fiber breakage and cohesive elements for delamination between plies of composite. The results obtained show that simplified approaches give an effective initial understanding of the impact response helping the interpretation of numerical and experimental results. In addition, the comparison of different methods of simulation demonstrated that continuum shell elements with induced cohesive elements present the most accurate results regarding the impact force, contact duration, energy absorption and damage extension.


A. Low velocity impact B. Explicit finite element analysis C. Interlaminar damage D. Intralaminar damage E. Aerospace CFRP panels F. Building block approach 


Compliance with Ethical Standards

Conflict of Interest

Non declared.


  1. 1.
    Bikakis, G.S.E.: Simulation of the dynamic response of GLARE plates subjected to low velocity impact using a linearized spring-mass model. Aerosp. Sci. Technol. 64, 24–30 (2017)CrossRefGoogle Scholar
  2. 2.
    Tsamasphyros, G.J., Bikakis, G.S.: Analytical modeling to predict the low velocity impact response of circular GLARE fiber–metal laminates. Aerosp. Sci. Technol. 29(1), 28–36 (2013)CrossRefGoogle Scholar
  3. 3.
    Giannopoulos, I.K., Theotokoglou, E.E., Zhang, X.: Impact damage and CAI strength of a woven CFRP material with fire retardant properties. Compos. Part B. 91(April), 8–17 (2016)CrossRefGoogle Scholar
  4. 4.
    Olsson, R.: Impact response of composite laminates – a guide to closed form solutions. FFA-TN 1992–33. The Aeronautical Research Institute of Sweden, Bromma (1993)Google Scholar
  5. 5.
    Abrate, S.: Modeling of impacts on composite structures. Compos. Struct. 51(2), 129–138 (2001)CrossRefGoogle Scholar
  6. 6.
    Shi, Y., Soutis, C.: A finite element analysis of impact damage in composite laminates. Aeronaut. J. 116(1186), 1331–1347 (2012)CrossRefGoogle Scholar
  7. 7.
    Shi, Y., Pinna, C., Soutis, C.: Modelling impact damage in composite laminates: a simulation of intra- and inter-laminar cracking. Compos. Struct. 114, 10–19 (2014)CrossRefGoogle Scholar
  8. 8.
    Shi, Y., Soutis, C.: Modelling low velocity impact induced damage in composite laminates. Mech. Adv. Mater. Mod. Process. 3, 14 (2017)CrossRefGoogle Scholar
  9. 9.
    Olsson, R.: Closed form prediction of peak load and delamination onset under small mass impact. Compos. Struct. 59(3), 341–349 (2003)CrossRefGoogle Scholar
  10. 10.
    Christoforou, A.P.: Impact dynamics and damage in composite structures. Compos. Struct. 52(2), 181–188 (2001)CrossRefGoogle Scholar
  11. 11.
    Abrate, S.: Impact on composite structures. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  12. 12.
    Davies, G.A.O., Zhang, X., Zhou, G., Watson, S.: Numerical modelling of impact damage. Composites. 25(5), 342–350 (1994)CrossRefGoogle Scholar
  13. 13.
    Elder, D.J., Thomson, R.S., Nguyen, M.Q., Scott, M.L.: Review of delamination predictive methods for low speed impact of composite laminates. Compos. Struct. 66(1–4), 677–683 (2004)CrossRefGoogle Scholar
  14. 14.
    Olsson, R.: Mass criterion for wave controlled impact response of composite plates. Compos. A: Appl. Sci. Manuf. 31(8), 879–887 (2000)CrossRefGoogle Scholar
  15. 15.
    Gonzalez, E.V., Maimi, P., Camanho, P.P., Lopes, C.S., Blanco, N.: Effects of ply clustering in laminated composite plates under low-velocity impact loading. Compos. Sci. Technol. 71, 805–817 (2011)CrossRefGoogle Scholar
  16. 16.
    Olsson, R.: Analytical prediction of large mass impact damage in composite laminates. Compos. A: Appl. Sci. Manuf. 32(9), 1207–1215 (2001)CrossRefGoogle Scholar
  17. 17.
    Shivakumar, K.N., Elber, W., Illg, W.: Prediction of impact force and duration due to low velocity impact on circular composite laminates. J. Appl. Mech. 52(3), 674–680 (1985)CrossRefGoogle Scholar
  18. 18.
    Yigit, A.S., Christoforou, A.P.: Limits of asymptotic solutions in low-velocity impact of composite plates. Compos. Struct. 81(4), 568–574 (2007)CrossRefGoogle Scholar
  19. 19.
    Olsson, R., Donadon, M.V., Falzon, B.G.: Delamination threshold load for dynamic impact on plates. Int. J. Solids Struct. 43(10), 3124–3141 (2006)CrossRefGoogle Scholar
  20. 20.
    Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells. Taylor and Francis, Philadelphia (2007)Google Scholar
  21. 21.
    Christoforou, A.P., Yigit, A.S.: Effect of flexibility on low velocity impact response. J. Sound Vib. 217(3), 563–578 (1998)CrossRefGoogle Scholar
  22. 22.
    Hashin, Z.: Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47, 329–334 (1980)CrossRefGoogle Scholar
  23. 23.
    Abaqus v6.14 analysis user’s guide. Dassault Systèmes Simulia Corp., Providence (2014)Google Scholar
  24. 24.
    ABAQUS/Explicit VUMAT for the simulation of damage and failure in unidirectional fiber composite materials, ABAQUS Answer 3123, Simulia (2011)Google Scholar
  25. 25.
    Puck, A., Schürmann, H.: Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol. 58(7), 1045–1067 (1998)CrossRefGoogle Scholar
  26. 26.
    Puck, A., Schürmann, H.: Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol. 62(12–13), 1633–1662 (2001)Google Scholar
  27. 27.
    Perillo, G., Vedvik, N.P., Echtermeyer, A.T.: Numerical analysis of low velocity impacts on composite. Advanced modelling techniques. Proc. Simulia. Conf. (2012)Google Scholar
  28. 28.
    Sharif-Khodaei, Z., Ghajari, M., Aliabadi, M.: Determination of impact location on composite stiffened panels. Smart Mater. Struct. 21(10): 105026 (2012)CrossRefGoogle Scholar
  29. 29.
    ASTM D7136/D7136M-05: Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event. ASTM International, West Conshohocken, PA, USA (2005)Google Scholar
  30. 30.
    Tsampas Spyridon, Analysis of compression failure in multidirectional laminates, Phd Thesis, Imperial College (2013)Google Scholar
  31. 31.
    Tserpes, K.I., Karachalios, V., Giannopoulos, I., Prentzias, V., Ruzek, R.: Strain and damage monitoring in CFRP fuselage panels using fiber Bragg grating sensors. Part I: design, manufacturing and impact testing. Compos. Struct. 107: 726–736 (2014)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Strength of Materials LaboratoryNational Technical University of AthensAthensGreece

Personalised recommendations