Advertisement

Applied Composite Materials

, Volume 26, Issue 2, pp 643–662 | Cite as

Support for Decision Making in Design of Composite Laminated Structures. Part 1: Parametric Knowledge Model

  • Gilberto Fontecha DulceyEmail author
  • Xavier Fischer
  • Pierre Joyot
  • Georges Fadel
Article
  • 397 Downloads

Abstract

The design process of laminated composites faces two challenges: the engineer designs the product and its morphology, but also, simultaneously, the material. The number of design solutions can be huge since the solution space is very large. Standard CAE systems (CAD, Finite Element Simulation) do not offer to the designer an approach to explore design spaces easily handling design parameters that are intrinsic to the laminate structures: number of plies, layers’ constitutive laws, viscoelastic capacity of the matrix and volume fraction of fibers. This paper provides a new model of behavior making explicit these design parameters. This Parametric and reduced Behavior Model (PRBM) allows engineers to make rapid simulations of the product they are creating. Integrated in a meta-model of Knowledge, it is combined to usual specific knowledge that are typically the domain of composite experts and manufacturing experts. Our PRBM is made from a separated numerical method, next enabling (1) a multiscale approach: the engineer can implement reasoning either at the scale of the fiber, or at the scale of the ply, at the scale of the plies interfaces, at the scale of the lamination or at the scale of the structure, or, (2) a multiphysical approach: the engineer can independently manage the mechanical effect of each ply and each interface, either in static or dynamic cases; in the latter, the creeping behavior can be considered. Two simple cases are presented to illustrate the relevance of the PRBM when simulating composite structures: one under a static load and the having a dynamic behavior.

Keywords

Separated behavior model Multiscale vs multiphysical approach Reduced and parametric model Layer-by-layer simulation Qualification of simulation model Laminate composite structure Meta-modelling of knwoedge 

Nomenclature

E

Young’s modulus (MPa)

Ef

Fiber Young’s modulus (MPa)

Em

Matrix Young’s modulus (MPa)

El

Young’s modulus of the ply in the direction of the fibers (MPa)

Et

Young’s modulus of the ply in a direction transversal to the fiber direction (MPa)

Fy , Fz

External forces (N)

F(ω)

Force as a function of frequency (N)

B

Body force

G

Shear modulus (MPa)

v

Poisson’s ratio

l

Length (mm)

h

Height (mm)

w

Width (mm)

u

Displacement in direction x

v

Displacement in direction y

w

Displacement in direction z

ε

Strain tensor

σ

Stress Tensor (Pa)

σij

Stress tensor element (Pa)

F0

Objective function

ς, ξ, ψ

(Weights)

\( {\mathbf{\mathcal{L}}}_{\boldsymbol{max}} \)

Maximum deformation to the direction y

\( {\boldsymbol{U}}_{\boldsymbol{x},\boldsymbol{y},\boldsymbol{z},{\boldsymbol{p}}_{\mathbf{1}},{\boldsymbol{p}}_{\mathbf{2}},\bullet \bullet \bullet, {\boldsymbol{p}}_{\boldsymbol{d}}} \)

Approximation of displacement field (mm)

U(x, y, z, p1, p1, , pd)

Displacement field as a function of given parameters (mm)

C

Tensor of material properties in local coordinates

n

Number of enrichment modes in PGD sense

\( \overline{\boldsymbol{C}} \)

Tensor of material properties in global coordinates

\( \overline{\boldsymbol{C}}\left({\boldsymbol{p}}_{\mathbf{1}}\right),\overline{\boldsymbol{C}}\left({\boldsymbol{p}}_{\mathbf{2}}\right),\overline{\boldsymbol{C}}\left({\boldsymbol{p}}_{\mathbf{3}}\right),\overline{\boldsymbol{C}}\left({\boldsymbol{p}}_{\mathbf{4}}\right) \)

Tensor of material properties at plies 1, 2, 3, 4 in global coordinates

Cint

Tensor of material properties at the interfaces

D

Transformation matrix

ρ

Density (kg/m3)

ρf

Fiber density

ρm

Resin density

Ω

Geometric domain

θi

Fiber orientation of ply i (degrees)

Vf

Fiber volume fraction (%)

G0

Short term shear modulus (GPa)

G

Long-term shear modulus (GPa)

α

Fractional derivative order

τ

Decay time (s)

X, Y, Z, P1, P2, P3, P4, P5, P6, P7

PGD functions

x,y,z,p1,p2,p3,p4,p5,p6,p7

PGD domains

Tmax

Maximum twist

References

  1. 1.
    Bassam, E.S., Hallett, S.R.: Multiscale surrogate modelling of the elastic response of thick composite structures with embedded defects and features. Compos. Struct. Compos. Struct. 200, 781–798, Elsevier (2018).  https://doi.org/10.1016/j.compstruct.2018.05.078 CrossRefGoogle Scholar
  2. 2.
    Beaumont, P.W.R.: On the problems of cracking and the question of structural integrity of engineering. Compos. Mater. Appl. Compos. Mater. 21(1), 5–43, Springer (2014).  https://doi.org/10.1007/s10443-013-9356-1 CrossRefGoogle Scholar
  3. 3.
    Bogdanor, M., Oskay, C., Clay, S.: Multiscale modeling of failure in composites under model parameter uncertainty. Comput. Mech. 56(3), 389–404, Springer (2015).  https://doi.org/10.1007/s00466-015-1177-7 CrossRefGoogle Scholar
  4. 4.
    Bognet, B., Bordeu, F., Chinesta, F., Leygue, A., Poitou, A.: Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity. Comput. Methods Appl. Mech. Eng. 201–204, 1–12 (2012).  https://doi.org/10.1016/j.cma.2011.08.025 CrossRefGoogle Scholar
  5. 5.
    Carrera, E.: Theories and finite elements for multilayered, anisotropic, composite plates and shells. Arch. Comput. Methods Eng. 9, 87–140 (2002).  https://doi.org/10.1007/BF02736649 CrossRefGoogle Scholar
  6. 6.
    Carrera, E., Pagani, A.: Multi-line enhanced beam model for the analysis of laminated composite structures. Compos. Part B Eng. 57, 112–119 (2014).  https://doi.org/10.1016/j.compositesb.2013.09.046 CrossRefGoogle Scholar
  7. 7.
    Chinesta, F., Leygue, A., Bordeu, F., Aguado, J.V., Cueto, E., Gonzalez, D., Alfaro, I., Ammar, A., Huerta, A.: PGD-based computational Vademecum for efficient design, optimization and control. Archives of Computational Methods in Engineering. 20(1), 31–59 (2013, Springer).  https://doi.org/10.1007/s11831-013-9080-x CrossRefGoogle Scholar
  8. 8.
    Darko, Ivančević, Smojver, I.: Explicit multiscale modelling of impact damage on laminated composites – part i: validation of the micromechanical model. Compos. Struct 145, Elsevier, (2016). doi: https://doi.org/10.1016/j.compstruct.2016.02.048
  9. 9.
    De Faria, A.R.: Optimization of composite structures under multiple load cases using a discrete approach based on lamination parameters. Int. J. Numer. Methods Eng. 104(9), 827–843, International Journal for Numerical method in Engineering, Wiley (2015).  https://doi.org/10.1002/nme.4941 CrossRefGoogle Scholar
  10. 10.
    Fontecha Dulcey, G., Fischer, X., Joyot, P.: An experiment-based method for parameter identification of a reduced multiscale parametric viscoelastic model of a laminated composite beam. Multiscale Multidiscip. Model. Exp. Des. (2018a).  https://doi.org/10.1007/s41939-018-0018-8
  11. 11.
    Fontecha Dulcey, G., Fischer, X., Joyot, P., Fadel G.: Support for decision making in Design of Composite Laminated Structures; part 2: reduced parametric model-based optimization. Springer Nature (2018b)Google Scholar
  12. 12.
    Galiotis C.P.: Interfacial damage modelling of composites, pp. 33–64, A. in Multi-Scale Modelling of Composite Material Systems 1st Edition, Soutis C., Beaumont P W R Eds., Woodhead Publishing ISBN: 9781855739369, (2005)Google Scholar
  13. 13.
    Ghiasi, H., Pasinin, D., Lessard, L.: Optimum stacking sequence design of composite materials part I: constant stiffness design. Compos. Struct. 90(1), 1–11, Elsevier (2009).  https://doi.org/10.1016/j.compstruct.2009.01.006 CrossRefGoogle Scholar
  14. 14.
    Hosseini Kordkheili, S.A., Toozandehjani, H., Soltani, Z.: A progressive multi-scale fatigue model for life prediction of laminated composites. J. Compos. Mater. 51(20), 2949–2960, Sage (2017).  https://doi.org/10.1177/0021998317709610 CrossRefGoogle Scholar
  15. 15.
    Jeong Sik, K., Arronche, L., Farrugia, A., Muliana, A., La Saponara, V.: Multi-scale modeling of time-dependent response of smart sandwich constructions. Compos. Struct. 93(9), 2196–2207, Elsevier (2011).  https://doi.org/10.1016/j.compstruct.2011.03.0062011 CrossRefGoogle Scholar
  16. 16.
    Kwon, Y.W., Allen, D.H., Talreja, R.: Multiscale Modeling and Simulation of Composite Materials and Structures. Springer, New York (2008)CrossRefGoogle Scholar
  17. 17.
    Ladevèze, P.: Multiscale modelling and computational strategies for composites. Int. J. Num. Method Eng. 60(1), 233–253, Wiley (2004).  https://doi.org/10.1002/nme.960 CrossRefGoogle Scholar
  18. 18.
    Macquart, T., Maes, V., Bordogna, M.T., Pirrera, A., Weaver, P.M.: Optimisation of composite structures – enforcing the feasibility of lamination parameter constraints with computationally-efficient maps. Compos. Struct. 192, 605–615 (2018).  https://doi.org/10.1016/j.compstruct.2018.03.049 CrossRefGoogle Scholar
  19. 19.
    Llorca, J.L., Gonzalez, C., Molina-Aldareguia, J., Lopes, C.S.: Multiscale modeling of composites: toward virtual testing and beyond. J. Min. Metals Mater. Soc. 65(2), 1–11 (2012).  https://doi.org/10.1007/s11837-012-0509-8 Google Scholar
  20. 20.
    Masoumi, S., Salehi, M., Akhlaghi, M.: Nonlinear viscoelastic analysis of laminated composite plates – a multi scale approach, Int. J. Recent Adv. Mech. Eng. (IJMECH) 2 (2), (2013)Google Scholar
  21. 21.
    McCartney, L.N: Multi-scale predictive modelling of cracking in laminate composites, pp. 65–98, A. in Multi-Scale Modelling of Composite Material Systems 1st Edition, Soutis C., Beaumont P W R Eds., Woodhead Publishing. ISBN: 9781855739369, (2005)Google Scholar
  22. 22.
    Mitsunori, M., Sugiyamat, Y.: Optimum design of laminated composite plates using lamination parameters. AIAA J. 31(5), 921–922 (1993).  https://doi.org/10.2514/3.49033 CrossRefGoogle Scholar
  23. 23.
    Monte, S.M.C., Infante, V., Madeira, J.F.A., Moleiro, F.: Optimization of fibers orientation in a composite specimen. Mech. Adv. Mater. Struct. 24(5), 410–416, Talyor and Francis (2017).  https://doi.org/10.1080/15376494.2016.1191099 CrossRefGoogle Scholar
  24. 24.
    Prulière, E., Chinesta, F., Ammar, A.: On the deterministic solution of multidimensional parametric models using the proper generalized decomposition. Math. Comput. Simul. 81, 791–810 (2010).  https://doi.org/10.1016/j.matcom.2010.07.015 CrossRefGoogle Scholar
  25. 25.
    Ranaivomiarana N., Irisarri F.X., Bettebghor D., Desmorat B., Concurrent optimization of material spatial distribution and material anisotropy repartition for two-dimensional structures. Continuum Mech. Thermodynam. 1–14, , Springer, (2018). doi: https://doi.org/10.1007/s00161-018-0661-7
  26. 26.
    Reddy, J.N. (ed.): Mechanics of composite materials. Springer Netherlands, Dordrecht (1994)Google Scholar
  27. 27.
    Sonmez, F.O.: Optimum design of composite structures: a literature survey (1969–2009). J. Reinforced Plastics Compos. 36(1), 3–39 (2017, Sage Journals).  https://doi.org/10.1177/0731684416668262 CrossRefGoogle Scholar
  28. 28.
    Soutis, C., Beaumont, P.W.R.: Multi-scale modelling of composite material systems 1st Edition, Woodhead Publishing. ISBN: 9781855739369, (2005a)Google Scholar
  29. 29.
    Soutis C., Beaumont P.W.R.: Multi-scale modelling of composite material systems: the art of predictive damage modelling, Woodhead, (2005b)Google Scholar
  30. 30.
    Wang C.H.: Progressive multi-scale modelling of composite laminates, pp. 259–277, A. in Multi-Scale Modelling of Composite Material Systems 1st Edition, Soutis C., Beaumont P W R Eds., Woodhead Publishing, , ISBN: 9781855739369, (2005)Google Scholar
  31. 31.
    Xinxing, T.X.: Wenjie Ge, Yonghong Zha, optimal fiber orientation and topology design for compliant mechanisms with fiber-reinforced composites. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 231(12), 2302–2312 (2017).  https://doi.org/10.1177/0954406216631783 CrossRefGoogle Scholar
  32. 32.
    Zhao, J., Xueling, F., Sun, Q.: Stacking sequence optimization of composite laminates for maximum buckling load using permutation search Algorithm. Compos. Struct. 121, 225–236, Elsevier (2015).  https://doi.org/10.1016/j.compstruct.2014.10.031

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.I2M CNRS UMR 5295, Université de Bordeaux, ENSAM, Esplanade des Arts et MétiersTalenceFrance
  2. 2.École Supérieure des Technologies Industrielles Avancées – ESTIAUniversité de Bordeaux, technopole izarbelBidartFrance
  3. 3.Universidad Pontificia BolivarianaBucaramangaColombia
  4. 4.Department of Mechanical EngineeringClemson UniversityClemsonUSA

Personalised recommendations