Advertisement

Applied Composite Materials

, Volume 26, Issue 2, pp 591–604 | Cite as

Structural Strength and Laminate Optimization of Composite Connecting Bracket in Manned Spacecraft Using a Genetic Algorithm

  • Ke Li
  • Xuewen LiuEmail author
  • Yulong Jin
  • Hongzhong Qi
  • Xintian Liu
  • Shen Xu
Article
  • 355 Downloads

Abstract

This paper presents a novel optimization scheme using a Genetic Algorithm (GA) to design a composite connecting bracket in manned spacecraft especially for the stress concentration of the hinge pedestal. Experimental modal analysis (EMA) as well as a large bending load tests was performed on the bracket to verify the failure mode through their mechanical response. The EMA results showed the best optimization scheme is placing the reinforced sleeve 20 mm from the hinge pedestal. Experimental results were also used to validate the Finite Element Analysis (FEA) approached used to predict the bracket structural response. The method used in this paper can provide some valuable guidance to study other similar composite structures in the future.

Keywords

Genetic algorithm(GA) Optimization Experimental modal analysis (EMA) Finite element analysis (FEA) 

Notes

Acknowledgements

The authors are grateful to the support of Shanghai Foundation for University Key Teacher (ZZGCD15039).

References

  1. 1.
    Maljaars, P.J., Kaminski, M.L., den Besten, J.H.: Finite element modelling and model updating of small scale composite propellers. Compos. Struct. 176, 154–163 (2017)CrossRefGoogle Scholar
  2. 2.
    Volnei, T., Jonas, D.C., Dirk, V.: Failure analysis of low velocity impact on thin composite laminates: experimental and numerical approaches. Compos. Struct. 83, 413–428 (2008)CrossRefGoogle Scholar
  3. 3.
    Dzenis, Y.A., Qian, J.: Analysis of microdamage evolution histories in composite. Int. J. Solids Struct. 38, 1831–1854 (2001)CrossRefGoogle Scholar
  4. 4.
    Herath, M.T., Prusty, B.G., Phillips, A.W., St. John, N.: Structural strength and laminate optimization of self-twisting composite hydrofoils using a genetic algorithm. Compos. Struct. 176, 359–378 (2017)CrossRefGoogle Scholar
  5. 5.
    Xiaobing, F., Hai, H., Wang, W.: Strength optimization of large wind turbine blade root on the genetic algorithm. Acta Materiae Compositae Sinica. 29, 196–202 (2012)Google Scholar
  6. 6.
    Han, X., Liang, Y., Li, Z., Li, G., Wu, X., Wang, B., Zhao, G., Wu, C.: An efficient genetic algorithm for optimization problems with time-consuming fitness evaluation. Int. J. Computational Method. 12, 1350106-1-1350106-24 (2015)CrossRefGoogle Scholar
  7. 7.
    Fei, Y., Weiji, L.: A stacking sequence optimization method of composite laminated panel based on an adaptive genetic algorithm. J. Northwestern Polytechnical Uni. 19, 156–159 (2001)Google Scholar
  8. 8.
    Wang, X., Guo, B.: Optimization of laminated composite plates based on the last-ply failure criterion. Journal of Wuhan University of Technology. 30, 140–143 (2006)Google Scholar
  9. 9.
    Tieliang, Z., Yunliang, D.: Structural layout optimization of composite stiffened panel. Journal of Nanjing University of Aeronautics & Astronautic. 42, 8–12 (2010)Google Scholar
  10. 10.
    Liang, D., Xu, Y., Xinglin, P.: Configuration optimum design of grid-stiffened composite pane. Journal of Solid Rocket Technology. 31, 527–531 (2008)Google Scholar
  11. 11.
    Weihong, Z., Shengdong, Z., Gao, T.: Stiffener layout optimization of thin walled Structure. Acta Aeronautica ET Astronautica Sinica. 30, 2126–2131 (2009)Google Scholar
  12. 12.
    Zehnder, N., Ermanni, P.: A methodology for the global optimization of laminated composite structures. Compos. Struct. 72, 311–320 (2006)CrossRefGoogle Scholar
  13. 13.
    Liu, B., Haftka, R.T., Akgun, M.A.: Permutation genetic algorithm for stacking sequence design of composite laminate. Comput. Methods Appl. Mech. Eng. 186, 357–372 (2000)CrossRefGoogle Scholar
  14. 14.
    Lin, C.C., Lee, Y.J.: Stacking sequence optimization of laminated composite structures using genetic algorithm with local improvement. Compos. Struct. 63, 339–345 (2004)CrossRefGoogle Scholar
  15. 15.
    Yang, X., Sun, L., Zhang, C., et al.: Design and optimization of composite automotive hatchback using integrated material-structure-process-performance method[J]. Appl. Compos. Mater. 1–21 (2018)Google Scholar
  16. 16.
    Soremekun, G., Gurdal, Z., Haftka, R.T., Watson, L.T.: Composite laminate design optimization by genetic algorithm with generalized elitist selection. Compos. Struct. 79, 131–143 (2001)CrossRefGoogle Scholar
  17. 17.
    Muc, A., Gurba, W.: Genetic algorithms and finite element analysis in optimization of composite structures. Comput. Struct. 54, 275–281 (2001)CrossRefGoogle Scholar
  18. 18.
    Park, J.H., Hwang, J.H., Lee, C.S., Hwang, W.: Stacking sequence design of composite laminates for maximum strength using genetic algorithms. Compos. Struct. 52, 217–231 (2001)CrossRefGoogle Scholar
  19. 19.
    Vosoughi, A.R., Darabi, A., Anjabin, N., Topal, U.: A mixed finite element and improved genetic algorithm method for maximizing buckling load of stiffened laminated composite plates. Aerosp. Sci. Technol. 70, 378–387 (2017)CrossRefGoogle Scholar
  20. 20.
    Pedramasl, N., Sahin, M., Acar, E.: Enhancement of quality of modal test results of an unmanned aerial vehicle wing by implementing a multi-objective genetic algorithm optimization. Aerosp. Sci. Technol. 71, 447–463 (2017)CrossRefGoogle Scholar
  21. 21.
    Herath, M.T., Prusty, B.G., Phillips, A.W., St. John, N.: Structural strength and laminate optimization of self-twisting composite hydrofoils using a genetic algorithm[J]. Compos. Struct. 176, 359–378 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Ke Li
    • 1
  • Xuewen Liu
    • 1
    Email author
  • Yulong Jin
    • 2
  • Hongzhong Qi
    • 3
  • Xintian Liu
    • 1
  • Shen Xu
    • 1
  1. 1.Shanghai University of Engineering ScienceShanghaiPeople’s Republic of China
  2. 2.Shanghai YunHua Electronic Tech Co., LtdShanghaiPeople’s Republic of China
  3. 3.Guangzhou Automobile Group Co., LtdGuangzhouPeople’s Republic of China

Personalised recommendations