Applied Composite Materials

, Volume 26, Issue 2, pp 479–492 | Cite as

Control of Braid Pattern on Every Side of a Braided Composite Part Produced by Asymmetrical Braiding Process

  • Ali Fouladi
  • Reza Jafari NedoushanEmail author
  • Jalil Hajrasouliha
  • Mohammad Sheikhzadeh
  • Yong-Min Kim
  • Won-Jin Na
  • Woong-Ryeol Yu


Prediction and control of braid angle in braided composites is of great importance. Especially in producing new braided composite like braided lattice and braided actuator, controlling of braid angle in each point of the part is of great importance. This paper presents a method for controlling the braid angle on every side of a flat mandrel with the help of an elliptical guide ring to be added to the braiding machine. At first applicability of this elliptical guide ring is demonstrated by experiments and numerical simulations. To develop this method, first the theoretical relations are formulated. Once verified with experimental results, these relations are then used to develop a procedure for calculation of guide ring dimensions, take-up speed and mandrel eccentricity that yield the desired braid angles. In the end, these calculations are performed for several arbitrary angles and the results are reproduced by experiment.


Braided composites Asymmetrical braiding Braid pattern prediction Control of braid pattern 



This work was partly supported by the NRF grant funded by the Ministry of Science, ICT & Future Planning (MSIP) (NO. NRF-2015R1A5A1037627) for which the last author of this paper (W.-R. Yu) feels grateful.


  1. 1.
    Shekarchizadeh, N., Abedi, M.M., Jafari Nedoushan, R.: Prediction of elastic behavior of plain weft-knitted composites. J. Reinf. Plast. Compos. 35, 1613–1622 (2016)CrossRefGoogle Scholar
  2. 2.
    Braley, M., Dingeldein, M.: Advancements in braided materials technology. A&P Technology, Inc., 46th International SAMPE Symposium, Long Beach, CA. pp. 2445–2454. (2001)Google Scholar
  3. 3.
    Branscomb, D., Beale, D., Broughton, R.: New directions in braiding. J. Eng. Fiber Fabr. 8(2), 11–24 (2013)Google Scholar
  4. 4.
    Cagri, A., Carey, J.: 2D braided composites: a review for stiffness critical applications. Compos. Struct. 85, 43–58 (2008)CrossRefGoogle Scholar
  5. 5.
    Wang, C., Roy, A., Chen, Z., Silberschmidt, V.V.: Braided textile composites for sports protection: Energy absorption and delamination in impact modelling. Mater. Des. 136, 258–269 (2017)CrossRefGoogle Scholar
  6. 6.
    Rawal, A., Potluri, P., Steele, C.: Geometrical modeling of the yarn paths in three-dimensional braided structures. J. Ind. Text. 35(115), 115–135 (2005)CrossRefGoogle Scholar
  7. 7.
    Omeroglu, S.: The effect of braiding parameters on the mechanical properties of braided ropes. Fibres Text. East. Eur. 14, 53–57 (2006)Google Scholar
  8. 8.
    Chen, J., Sanchez, S.B., McBride, T.M.: Sensitivity of mechanical properties to braid misalignment in triaxial braid composite panels. J. Compos. Technol. Res. 20(1), 13–17 (1998)CrossRefGoogle Scholar
  9. 9.
    Gao, Y.T., Ko, F.K., Hu, H.: Integrated design for manufacturing of braided preforms for advanced composites part I: 2D braiding. Appl. Compos. Mater. 20, 1007–1023 (2013)CrossRefGoogle Scholar
  10. 10.
    Gao, Y.T., Ko, F.K., Hu, H.: Integrated design for manufacturing of braided preforms for advanced composites part II: 3D braiding. Appl. Compos. Mater. 20, 1065–1075 (2013)CrossRefGoogle Scholar
  11. 11.
    Pickett, A.K., Sirtautas, J., Erber, A.: Braiding Simulation and Prediction of Mechanical Properties. Appl. Compos. Mater. 16, 345–364 (2009)CrossRefGoogle Scholar
  12. 12.
    Gurley, A., Beale, D., Broughton, R., Branscomb, D.: The design of optimal lattice structures manufactured by maypole braiding. J. Mech. Des. 137 (2015)Google Scholar
  13. 13.
    Branscomb, D., Beale, D., Broughton, R.: New directions in braiding. J. Eng. Fiber. Fabr. 8(2) (2013)Google Scholar
  14. 14.
    Wang, B., McDaid, A., Biglari-Abhari, M., Giffney, T., Aw, K.: A bimorph pneumatic bending actuator by control of fiber braiding angle. Sensors Actuators A. 257, 173–184 (2017)CrossRefGoogle Scholar
  15. 15.
    Wang, B., McDaid, A., Giffney, T., Biglari-Abhari, M., Aw, K.C.: Design, modelling and simulation of soft grippers using new bimorph pneumatic bending actuators. Cogent Eng. 1285482, 4 (2017)Google Scholar
  16. 16.
    Shanahan, C., Tofail, S.A.M., Tiernan, P.: Viscoelastic braided stent: Finite element modelling and validation of crimping behaviour. Mater. Des. 121, 143–153 (2017)CrossRefGoogle Scholar
  17. 17.
    Rebelo, R., Vila, N., Fangueiro, R., Carvalho, S., Rana, S.: Influence of design parameters on the mechanical behavior and porosity of braided fibrous stents. Mater. Des. 86, 237–247 (2015)CrossRefGoogle Scholar
  18. 18.
    Potluri, P., Rawal, A., Rivaldi, M., et al.: Geometrical modelling and control of a triaxial braiding machine for producing 3D preforms. Compos. A Appl. Sci. Manuf. 34, 481–492 (2003)CrossRefGoogle Scholar
  19. 19.
    Baalbergen, E., et al.: Innovating the overbraiding design process to optimise the development of composite aircraft structural components. (2012)Google Scholar
  20. 20.
    Na, W.-J., et al.: Prediction of the braid pattern on arbitrary-shaped mandrels using the minimum path condition. Compos. Sci. Technol. 91, 30–37 (2014)CrossRefGoogle Scholar
  21. 21.
    Akkerman, R., Villa Rodriguez, B.: Braiding simulation for RTM preforms. (2006)Google Scholar
  22. 22.
    Akkerman, R., Rodriguez, V., Hadir, L.: Braiding simulation and slip evaluation for arbitrary mandrels. (2007)Google Scholar
  23. 23.
    Nishimoto, H., Ohtani, A., Nakai, A., Hamada, H.: Generation and prediction methods for circumferential distribution changes in the braiding angle on a cylindrical braided fabric, Proc. IMechE Vol. 224 Part L: J. Materials: Design and Applications (2015)Google Scholar
  24. 24.
    Long, A.: Process modelling for liquid moulding of braided preforms. Compos. A: Appl. Sci. Manuf. 32(7), 941–953 (2001)CrossRefGoogle Scholar
  25. 25.
    Fouladi, A., Jafari Nedoushan, R.: Prediction and optimization of yarn path in braiding of mandrels with flat faces. J Compos Mater (2017)Google Scholar
  26. 26.
    Hajrasouliha, J., Jafari Nedoushan, R., Sheikhzadeh, M., Nal, W., Yu, W.R.: Theoretical and experimental study of braid pattern in mandrels with arbitrary cross-sections. J Compos Mater 0021998318773460Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Ali Fouladi
    • 1
  • Reza Jafari Nedoushan
    • 1
    Email author
  • Jalil Hajrasouliha
    • 2
  • Mohammad Sheikhzadeh
    • 2
  • Yong-Min Kim
    • 3
  • Won-Jin Na
    • 3
  • Woong-Ryeol Yu
    • 3
  1. 1.Department of Mechanical EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Department of Textile EngineeringIsfahan University of TechnologyIsfahanIran
  3. 3.Department of Materials Science and Engineering and Research Institute of Advanced MaterialsSeoul National UniversitySeoulRepublic of Korea

Personalised recommendations