Advertisement

Applied Composite Materials

, Volume 26, Issue 2, pp 455–467 | Cite as

Synergistic Effects among the Structure, Martensite Transformation and Shear Band in a Shape Memory Alloy-Metallic Glass Composite

  • Xudong ZhangEmail author
  • Junqiang Ren
  • Xiangdong DingEmail author
Article
  • 617 Downloads

Abstract

In this work, we use the finite element method to investigate the free volume evolution, as well as the martensite transformation effect and its connection with the pretreatment strain, in a shape memory alloy-metallic glass composite. Our simulation results show that the martensite phase transformation can enhance the blocking effect while relieving the free volume localization. The synergistic effect among the martensite transformation effect, blocking effect, and shear band interaction in the composite is responsible for the tensile plasticity and work-hardening capability. In addition, we design a Sierpinski carpet-like fractal microstructure so that the composite exhibits improved tensile performance as a result of the enhanced synergistic effect. However, the tensile performance of the composite deteriorates with increasing pretreatment strain since the martensite transformation effect is weakened.

Keywords

Metallic glass Shape memory material Composite materials Fractal Finite element method 

Notes

Acknowledgements

The authors acknowledge the support of the National Natural Science Foundation of China (51320105014) and 111 project (B06025). X. Z acknowledges the computational resources provided by the HPC platform of Xi’an Jiaotong University.

References

  1. 1.
    Pauly, S., Gorantla, S., Wang, G., Kühn, U., Eckert, J.: Transformation-mediated ductility in CuZr-based bulk metallic glasses. Nat. Mater. 9, 473–477 (2010)CrossRefGoogle Scholar
  2. 2.
    Hofmann, D.C., Suh, J.Y., Wiest, A., Duan, G., Lind, M.L., Demetriou, M.D., Johnson, W.L.: Designing metallic glass matrix composites with high toughness and tensile ductility. Nature. 451, 1085–1089 (2008)CrossRefGoogle Scholar
  3. 3.
    Qiao, J., Jia, H., Liaw, P.K.: Metallic glass matrix composites. Mater. Sci. Eng. R. Rep. 100, 1–69 (2016)CrossRefGoogle Scholar
  4. 4.
    Sarac, B., Schroers, J.: Designing tensile ductility in metallic glasses. Nat. Commun. 4, 2158 (2013)CrossRefGoogle Scholar
  5. 5.
    Şopu, D., Soyarslan, C., Sarac, B., Bargmann, S., Stoica, M., Eckert, J.: Structure-property relationships in nanoporous metallic glasses. Acta Mater. 106, 199–207 (2016)CrossRefGoogle Scholar
  6. 6.
    Wang, Y., Li, M., Xu, J.: Toughen and harden metallic glass through designing statistical heterogeneity. Scr. Mater. 113, 10–13 (2016)CrossRefGoogle Scholar
  7. 7.
    Wang, Y., Li, M., Xu, J.: Free volume gradient effect on mechanical properties of metallic glasses. Scr. Mater. 130, 12–16 (2017)CrossRefGoogle Scholar
  8. 8.
    Wu, Y., Xiao, Y., Chen, G., Liu, C.T., Lu, Z.: Bulk metallic glass composites with transformation-mediated work-hardening and ductility. Adv. Mater. 22, 2770–2773 (2010)CrossRefGoogle Scholar
  9. 9.
    Wu, Y., Wang, H., Wu, H.H., Zhang, Z.Y., Hui, X.D., Chen, G.L., Ma, D., Wang, X.L., Lu, Z.P.: Formation of Cu–Zr–Al bulk metallic glass composites with improved tensile properties. Acta Mater. 59, 2928–2936 (2011)CrossRefGoogle Scholar
  10. 10.
    Hofmann, D.C.: Shape memory bulk metallic glass composites. Science. 329, 1294–1295 (2010)CrossRefGoogle Scholar
  11. 11.
    Sarac, B., Wilmers, J., Bargmann, S.: Property optimization of porous metallic glasses via structural design. Mater. Lett. 134, 306–310 (2014)CrossRefGoogle Scholar
  12. 12.
    Jiang, Y., Sun, L., Wu, Q., Qiu, K.: Enhanced tensile ductility of metallic glass matrix composites with novel microstructure. J. Non-Cryst. Solids. 459, 26–31 (2017)CrossRefGoogle Scholar
  13. 13.
    Jiang, Y., Wu, Q., Sun, L.: Macroscopic tensile plasticity of metallic glass matrix composites through gradient microstructures. J. Non-Cryst. Solids. 475, 96–100 (2017)CrossRefGoogle Scholar
  14. 14.
    Jiang, Y., Shi, X., Qiu, K.: Numerical study of shear banding evolution in bulk metallic glass composites. Mater. Des. 77, 32–40 (2015)CrossRefGoogle Scholar
  15. 15.
    Wu, F.F., Chan, K.C., Jiang, S.S., Chen, S.H., Wang, G.: Bulk metallic glass composite with good tensile ductility, high strength and large elastic strain limit. Sci. Rep. 4, 5302 (2014)CrossRefGoogle Scholar
  16. 16.
    Wei, R., Chang, Y., Li, Y.F., Li, G., Yang, S., Zhang, C.J., He, L.: Effect of lateral pre-compression on the compressive behavior of a CuZr-based bulk metallic glass composite containing B2-CuZr phase. Mater. Sci. Eng. A. 587, 233–239 (2013)CrossRefGoogle Scholar
  17. 17.
    Hao, S., Cui, L., Jiang, D., Han, X., Ren, Y., Jiang, J., Liu, Y., Liu, Z., Mao, S., Wang, Y., Li, Y., Ren, X., Ding, X., Wang, S., Yu, C., Shi, X., Du, M., Yang, F., Zheng, Y., Zhang, Z., Li, X., Brown, D.E., Li, J.: A transforming metal nanocomposite with large elastic strain, low modulus, and high strength. Science. 339, 1191–1194 (2013)CrossRefGoogle Scholar
  18. 18.
    Zhang, X., Zong, H., Cui, L., Fan, X., Ding, X., Sun, J.: Origin of high strength, low modulus superelasticity in nanowire-shape memory alloy composites. Sci. Rep. 7, 46360 (2017)CrossRefGoogle Scholar
  19. 19.
    Liu, Z., Cui, L., Liu, Y., Jiang, D., Jiang, J., Shi, X., Shao, Y., Zheng, Y.: Influence of internal stress coupling on the deformation behavior of NiTi–Nb nanowire composites. Scr. Mater. 77, 75–78 (2014)CrossRefGoogle Scholar
  20. 20.
    Zhang, X., Ren, J., Wang, X., Zong, H., Cui, L., Ding, X.: Insight into the effects of reinforcement shape on achieving continuous martensite transformation in phase transforming matrix composites. Appl. Compos. Mater. (2017).  https://doi.org/10.1007/s10443-017-9671-z
  21. 21.
    Spaepen, F.: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407–415 (1977)CrossRefGoogle Scholar
  22. 22.
    Jiang, Y., Qiu, K.: Computational micromechanics analysis of toughening mechanisms of particle-reinforced bulk metallic glass composites. Mater. Des. 65, 410–416 (2015)CrossRefGoogle Scholar
  23. 23.
    Wang, Y., Li, M., Xu, J.: Mechanical properties of spinodal decomposed metallic glass composites. Scr. Mater. 135, 41–45 (2017)CrossRefGoogle Scholar
  24. 24.
    Auricchio, F., Taylor, R.L.: Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behavior. Comput. Methods Appl. Mech. Eng. 143, 175–194 (1997)CrossRefGoogle Scholar
  25. 25.
    Auricchio, F., Taylor, R.L., Lubliner, J.: Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior. Comput. Methods Appl. Mech. Eng. 146, 281–312 (1997)CrossRefGoogle Scholar
  26. 26.
    Gao, Y.F.: An implicit finite element method for simulating inhomogeneous deformation and shear bands of amorphous alloys based on the free-volume model. Model. Simul. Mater. Sci. Eng. 14, 1329–1345 (2006)CrossRefGoogle Scholar
  27. 27.
    Rebelo, N., Hsu, M., Foadian, H.: Simulation of superelastic alloys behavior with ABAQUS. In: SMST-2000: Proceedings of the International Conference on Shape Memory and Superelastic Technologies, Pacific Grove, USA, pp. 457–469 (2001)Google Scholar
  28. 28.
    Pauly, S., Liu, G., Wang, G., Das, J., Kim, K.B., Kühn, U., Kim, D.H., Eckert, J.: Modeling deformation behavior of Cu–Zr–Al bulk metallic glass matrix composites. Appl. Phys. Lett. 95, 101906 (2009)CrossRefGoogle Scholar
  29. 29.
    Rao, W., Zhang, J., Kang, G., Liaw, P.K.: Numerical simulation on the deformation behaviors of bulk metallic glass composites under uniaxial tension and compression. Compos. Struct. 187, 411–428 (2018)CrossRefGoogle Scholar
  30. 30.
    Oftadeh, R., Haghpanah, B., Vella, D., Boudaoud, A., Vaziri, A.: Optimal fractal-like hierarchical honeycombs. Phys. Rev. Lett. 113, 104301 (2014)CrossRefGoogle Scholar
  31. 31.
    Fan, J.A., Yeo, W.H., Su, Y., Hattori, Y., Lee, W., Jung, S.Y., Zhang, Y., Liu, Z., Cheng, H., Falgout, L., Bajema, M., Coleman, T., Gregoire, D., Larsen, R.J., Huang, Y., Rogers, J.A.: Fractal design concepts for stretchable electronics. Nat. Commun. 5, 3266 (2014)CrossRefGoogle Scholar
  32. 32.
    Takeda, M.W., Kirihara, S., Miyamoto, Y., Sakoda, K., Honda, K.: Localization of electromagnetic waves in three-dimensional fractal cavities. Phys. Rev. Lett. 92, 093902 (2004)CrossRefGoogle Scholar
  33. 33.
    Yang, F., Ni, D., Hao, S., Li, S., Ma, Z., Liu, Y., Feng, C., Cui, L.: Microstructure and phase stress partition of Mo fiber reinforced CuZnAl composite. Mater. Sci. Eng. A. 628, 419–422 (2015)CrossRefGoogle Scholar
  34. 34.
    Dong, Y.H., Cong, D.Y., Nie, Z.H., He, Z.B., Li, L.F., Wang, Z.L., Ren, Y., Wang, Y.D.: Stress transfer during different deformation stages in a nano-precipitate-strengthened Ni-Ti shape memory alloy. Appl. Phys. Lett. 107, 201901 (2015)CrossRefGoogle Scholar
  35. 35.
    Hao, S.J., Jiang, D.Q., Cui, L.S., Wang, Y.D., Shi, X.B., Nie, Z.H., Brown, D.E., Ren, Y.: Phase-stress partition and stress-induced martensitic transformation in NbTi/NiTi nanocomposite. Appl. Phys. Lett. 99, 084103 (2011)CrossRefGoogle Scholar
  36. 36.
    Yu, C., Liu, Z., Liu, Y., Shao, Y., Ren, Y., Cui, L.: Load transfer in phase transforming matrix–nanowire composite revealing the significant load carrying capacity of the nanowires. Mater. Des. 89, 721–726 (2016)CrossRefGoogle Scholar
  37. 37.
    Yu, H.B., Hu, J., Xia, X.X., Sun, B.A., Li, X.X., Wang, W.H., Bai, H.Y.: Stress-induced structural inhomogeneity and plasticity of bulk metallic glasses. Scr. Mater. 61, 640–643 (2009)CrossRefGoogle Scholar
  38. 38.
    Kumar, G., Rector, D., Conner, R.D., Schroers, J.: Embrittlement of Zr-based bulk metallic glasses. Acta Mater. 57, 3572–3583 (2009)CrossRefGoogle Scholar
  39. 39.
    Chen, L.Y., Fu, Z.D., Zhang, G.Q., Hao, X.P., Jiang, Q.K., Wang, X.D., Cao, Q.P., Franz, H., Liu, Y.G., Xie, H.S., Zhang, S.L., Wang, B.Y., Zeng, Y.W., Jiang, J.Z.: New class of plastic bulk metallic glass. Phys. Rev. Lett. 100, 075501 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory for Mechanical Behavior of MaterialsXi’an Jiaotong UniversityXi’anChina
  2. 2.State Key Laboratory of Advanced Processing and Recycling of Non-ferrous MetalsLanzhou University of TechnologyLanzhouChina

Personalised recommendations