Advertisement

Applied Composite Materials

, Volume 26, Issue 1, pp 321–337 | Cite as

Thermal Characterization of Carbon Fiber-Reinforced Carbon Composites

  • J. D. MaciasEmail author
  • J. Bante-Guerra
  • F. Cervantes-Alvarez
  • G. Rodrìguez-Gattorno
  • O. Arés-Muzio
  • H. Romero-Paredes
  • C. A. Arancibia-Bulnes
  • V. Ramos-Sánchez
  • H. I. Villafán-Vidales
  • J. Ordonez-Miranda
  • R. Li Voti
  • J. J. Alvarado-Gil
Article
  • 372 Downloads

Abstract

Carbon fiber-reinforced carbon (C/C) composites consist in a carbon matrix holding carbon or graphite fibers together, whose physical properties are determined not only by those of their individual components, but also by the layer buildup and the material preparation and processing. The complex structure of C/C composites along with the fiber orientation provide an effective means for tailoring their mechanical, electrical, and thermal properties. In this work, we use the Laser Flash Technique to measure the thermal diffusivity and thermal conductivity of C/C composites made up of laminates of weaved bundles of carbon fibers, forming a regular and repeated orthogonal pattern, embedded in a graphite matrix. Our experimental data show that: i) the cross-plane thermal conductivity remains practically constant around (5.3 ± 0.4) W·m−1 K−1, within the temperature range from 370 K to 1700 K. ii) The thermal diffusivity and thermal conductivity along the cross-plane direction to the fibers axis is about five times smaller than the corresponding ones in the laminates plane. iii) The measured cross-plane thermal conductivity is well described by a theoretical model that considers both the conductive and radiative thermal contributions of the effective thermal conductivity.

Keywords

C/C composite Anisotropic structures Solid thermal conductivity Radiative thermal conductivity Rosseland extinction coefficient Solar thermal technology 

Notes

Acknowledgements

Authors acknowledge the financial support received by the “Fondo Sectorial Conacyt-Secretaría de Energía-Sustentabilidad Energética and the “Centro Mexicano de Innovación en Energía Solar (CeMIESol)” Grant no. 207450 within the Strategic Project No. 10 “Combustibles Solares y Procesos Industriales (COSOL-pi)”, as well as to the Instituto de Energías Renovables of the Universidad Nacional Autónoma de México, Universidad Autónoma Metropolitana (Unidad Iztapalapa), Universidad Autónoma de Chihuahua and to the Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional (CINVESTAV), for their assistance with financial and strategic management. This work was also partially supported by Projects 192 “Fronteras de la ciencia” and 251882 “Investigación Científica Básica 2015”. Additionally, Juan Daniel Macias acknowledges the financial support received by the “Fondo Sectorial Conacyt-Secretaría de Energía-Sustentabilidad Energética” under the program: “Estancias Posdoctorales en Mexico”.

References

  1. 1.
    Chand, S.: Carbon fibers for composites. J. Mater. Sci. 35(6), 1303–1313 (2000)Google Scholar
  2. 2.
    Krenkel, W., Berndt, F.: C/C-SiC composites for space applications and advanced friction systems. Mater. Sci. Eng. A. 412(1–2), 177–181 (2005)Google Scholar
  3. 3.
    Tian, T., Cole, K.D.: Anisotropic thermal conductivity measurement of carbon-fiber/epoxy composite materials. Int. J. Heat Mass Transf. 55(23–24), 6530–6537 (2012)Google Scholar
  4. 4.
    Sauder, C., Lamon, J., Pailler, R.: The tensile behavior of carbon fibers at high temperatures up to 2400 °C. Carbon. 42(4), 715–725 (2004)Google Scholar
  5. 5.
    Pedraza, D.F., Klemens, P.G.: Effective conductivity of polycrystalline graphite. Carbon. 31(6), 951–956 (1993)Google Scholar
  6. 6.
    Huang, X.: Fabrication and properties of carbon fibers. Materials (Basel). 2(4), 2369–2403 (2009)Google Scholar
  7. 7.
    Minus, M.L., Kumar, S.: The processing, properties, and structure of carbon fibers. JOM J. Miner. Met. Mater. Soc. 57, 52–58 (2005)Google Scholar
  8. 8.
    Ghosh, S., Calizo, I., Teweldebrhan, D., Pokatilov, E.P., Nika, D.L., Balandin, A.A., Bao, W., Miao, F., Lau, C.N.: Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92(15), 151911 (2008)Google Scholar
  9. 9.
    Fu, S.Y., Lauke, B., Mäder, E., Yue, C.Y., Hu, X.: Tensile properties of short-glass-fiber-and short-carbon-fiber-reinforced polypropylene composites. Compos. Part A Appl. Sci. Manuf. 31(10), 1117–1125 (2000)Google Scholar
  10. 10.
    Fu, S.Y., Lauke, B., Mäder, E., Hu, X., Yue, C.Y.: Fracture resistance of short-glass-fiber-reinforced and short-carbon-fiber-reinforced polypropylene under Charpy impact load and its dependence on processing. Mater. Process. Technol. 89–90, 501–507 (1999)Google Scholar
  11. 11.
    Qiu, L., Zheng, X.H., Zhu, J., Su, G.P., Tang, D.W.: The effect of grain size on the lattice thermal conductivity of an individual polyacrylonitrile-based carbon fiber. Carbon. 51(1), 265–273 (2013)Google Scholar
  12. 12.
    Newcomb, B.A.: Processing, structure, and properties of carbon fibers. Compos. Part A Appl. Sci. Manuf. 91, 262–282 (2016)Google Scholar
  13. 13.
    Jacobson, N., Roth, D., Rauser, R., Cawley, J., Curry, D.: Oxidation of carbon/carbon through coating cracks. ECS Trans. 16(44), 125–135 (2009)Google Scholar
  14. 14.
    Manocha Lalit, M.: High performance carbon-carbon composites. Sadhana. 28(1–2), 349–358 (2003)Google Scholar
  15. 15.
    Dehoux, T., Wright, O.B., Li Voti, R.: Picosecond time scale imaging of mechanical contacts. Ultrasonics. 50(2), 197–201 (2010)Google Scholar
  16. 16.
    Steinberger, R., Valadas-Leitao, T., Ladstatter, E., Pinter, G., Billinger, W., Lang, R.: Infrared thermographic techniques for non-destructive damage characterization of carbon fibre reinforced polymers during tensile fatigue testing. Int. J. Fatigue. 28(10), 1340–1347 (2006)Google Scholar
  17. 17.
    Thostenson, E.T., Li, W.Z., Wang, D.Z., Ren, Z.F., Chou, T.W.: Carbon nanotube/carbon fiber hybrid multiscale composites. J. Appl. Phys. 91(9), 6034–6037 (2002)Google Scholar
  18. 18.
    Zhang, Z., Wu, Z., Sun, Y., Li, F.: Design aspects of the Chinese modular high-temperature gas-cooled reactor HTR-PM. Nucl. Eng. Des. 236(5–6), 485–490 (2006)Google Scholar
  19. 19.
    Fukai, J., Kanou, M., Kodama, Y., Miyatake, O.: Thermal conductivity enhancement of energy storage media using carbon fibers. Energy Convers. Manag. 41(14), 1543–1556 (2000)Google Scholar
  20. 20.
    Balat-Pichelin, M., Hernandez, D., Olalde, G., Rivoire, B., Robert, J.F.: Concentrated solar energy as a diagnostic tool to study materials under extreme conditions. J. Sol. Energy Eng. 124(3), 215 (2002)Google Scholar
  21. 21.
    Loutzenhiser, P.G., Meier, A., Steinfeld, A.: Review of the two-step H2O/CO2-splitting solar thermochemical cycle based on Zn/ZnO redox reactions. Materials (Basel). 3(11), 4922–4938 (2010)Google Scholar
  22. 22.
    Lin, T., Jia, D., He, P., Wang, M., Liang, D.: Effects of fiber length on mechanical properties and fracture behavior of short carbon fiber reinforced geopolymer matrix composites. Mater. Sci. Eng. A. 497(1–2), 181–185 (2008)Google Scholar
  23. 23.
    Burger, N., Laachachi, A., Ferriol, M., Lutz, M., Toniazzo, V., Ruch, D.: Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog. Polym. Sci. 61, 1–28 (2016)Google Scholar
  24. 24.
    Heremans, J., Rahim, I., Dresselhaus, M.S.: Thermal conductivity and Raman spectra of carbon fibers. Phys. Rev. B. 32(10), 6742–6747 (1985)Google Scholar
  25. 25.
    Luo, R., Liu, T., Li, J., Zhang, H., Chen, Z., Tian, G.: Thermophysical properties of carbon/carbon composites and physical mechanism of thermal expansion and thermal conductivity. Carbon. 42(14), 2887–2895 (2004)Google Scholar
  26. 26.
    Gonnet, P.: Thermal Conductivity and Coefficients of Thermal Expansion of SWNTs/Epoxy Nanocomposites. The Florida State University (2004)Google Scholar
  27. 27.
    Feng, Z.H., Zhi, J.Y., Fan, Z., Sun, D., Si, C., Wang, X.-D.: An analytical model of thermal conductivity for carbon/carbon composites with pitch-based matrix. Adv. Mech. Eng. 7(1), 242586 (2015)Google Scholar
  28. 28.
    Yuan, G., Li, X., Dong, Z., Xiong, X., Rand, B., Cui, Z., Cong, Y., Zhang, J., Li, Y., Zhang, Z., Wang, J.: Pitch-based ribbon-shaped carbon-fiber-reinforced one-dimensional carbon/carbon composites with ultrahigh thermal conductivity. Carbon. 68, 413–425 (2014)Google Scholar
  29. 29.
    Ohlhorst, C.W., Vaughn, W.L., Ransone, P.O., Tsou, H.T.: Thermal conductivity database of various structural carbon-carbon composite materials. NASA Tech. Memo. 4787, (1997)Google Scholar
  30. 30.
    Shim, H.B., Seo, M.K., Park, S.J.: Thermal conductivity and mechanical properties of various cross-section types carbon fiber-reinforced composites. J. Mater. Sci. 37(9), 1881–1885 (2002)Google Scholar
  31. 31.
    Michalowski, J., Mikociak, D., Konsztowicz, K.J., Blazewicz, S.: Thermal conductivity of 2D C-C composites with pyrolytic and glass-like carbon matrices. J. Nucl. Mater. 393(1), 47–53 (2009)Google Scholar
  32. 32.
    Parker, W.J., Jenkins, R.J., Butler, C.P., Abbott, G.L.: Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32(9), 1679–1684 (1961)Google Scholar
  33. 33.
    Nunes dos Santos, W., Nicolau dos Santos, J., Mummery, P., Wallwork, A.: Thermal diffusivity of polymers by modified angström method. Polym. Test. 29(1), 107–112 (2010)Google Scholar
  34. 34.
    Schunk Kohlenstofftechnik GmbH: Schunk-Carbon fiber-reinforced carbon (C/C). [Online]. Available: www.schunk-group.com
  35. 35.
    Kim, S.K., Kim, Y.J.: Determination of apparent thickness of graphite coating in flash method. Thermochim. Acta. 468(1–2), 6–9 (2008)Google Scholar
  36. 36.
    Shibata, H., Suzuki, A., Ohta, H.: Measurement of thermal transport properties for molten silicate glasses at high temperatures by means of a novel laser flash technique. Mater. Trans. 46(8), 1877–1881 (2005)Google Scholar
  37. 37.
    Nishi, T., Shibata, H., Ohta, H., Waseda, Y.: Thermal conductivities of molten Iron, cobalt, and nickel by laser flash method. Metall. Mater. Trans. A. 34, 2801–2807 (2003)Google Scholar
  38. 38.
    Dos Santos, W.N., Mummery, P., Wallwork, A.: Thermal diffusivity of polymers by the laser flash technique. Polym. Test. 24(5), 628–634 (2005)Google Scholar
  39. 39.
    Min, S., Blumm, J., Lindemann, A.: A new laser flash system for measurement of the thermophysical properties. Thermochim. Acta. 455(1–2), 46–49 (2007)Google Scholar
  40. 40.
    Clark III, L.M., Taylor, R.E.: Radiation loss in the flash method for thermal diffusivity. J. Appl. Phys. 46(2), 714–719 (1975)Google Scholar
  41. 41.
    Cowan, R.D.: Pulse method of measuring thermal diffusivity at high temperatures. J. Appl. Phys. 34(4), 926–927 (1963)Google Scholar
  42. 42.
    Cape, J.A., Lehman, G.W.: Temperature and finite pulse-time effects in the flash method for measuring thermal diffusivity. J. Appl. Phys. 34(7), 1909–1913 (1963)Google Scholar
  43. 43.
    Sheindlin, M., Halton, D., Musella, M., Ronchi, C.: Advances in the use of laser-flash techniques for thermal diffusivity measurement. Rev. Sci. Instrum. 69(3), 1426–1436 (1998)Google Scholar
  44. 44.
    Azumi, T., Takahashi, Y.: Novel finite pulse-width correction in flash thermal diffusivity measurement. Rev. Sci. Instrum. 52(9), 1411–1413 (1981)Google Scholar
  45. 45.
    Takahashi, Y.: Measurement of thermophysical properties of metals and ceramics by the laser-flash method. Int. J. Thermophys. 5(1), 41–52 (1984)Google Scholar
  46. 46.
    Lechner, T., Hahne, E.: Finite pulse time effects in flash diffusivity measurements. Thermochim. Acta. 218, 341–350 (1993)Google Scholar
  47. 47.
    Dusza, L.: Combined solution of the simultaneous heat loss and finite pulse corrections with the laser flash method. High Temp.-High Press. 27-28, 467–473 (1995)Google Scholar
  48. 48.
    Mendioroz, A., Fuente-Dacal, R., Apiñaniz, E., Salazar, A.: Thermal diffusivity measurements of thin plates and filaments using lock-in thermography. Rev. Sci. Instrum. 80(7), 74904 (2009)Google Scholar
  49. 49.
    Bodzenta, J., Burak, B., Nowak, M., Pyka, M., Szalajko, M., Tanasiewicz, M.: Measurement of the thermal diffusivity of dental filling materials using modified Angstrom’s method. Dent. Mater. 22(7), 617–621 (2006)Google Scholar
  50. 50.
    K. Shinzato and T. Baba, “A Laser Flash Apparatus for thermal diffusivity and specific heat capacity measurements,” J. Therm. Anal. Calorim., vol. 64, pp. 413–422, 2001Google Scholar
  51. 51.
    Zhang, Q.C.: Recent progress in high-temperature solar selective coatings. Sol. Energy Mater. Sol. Cells. 62(1), 63–74 (2000)Google Scholar
  52. 52.
    Gelin, K., Boström, T., Wäckelgård, E.: Thermal emittance of sputter deposited infrared reflectors in spectrally selective tandem solar absorbers. Sol. Energy. 77(1), 115–119 (2004)Google Scholar
  53. 53.
    Yue, S., Yueyan, S., Fengchun, W.: High-temperature optical properties and stability of AlxOy–AlNx–Al solar selective absorbing surface prepared by DC magnetron reactive sputtering. Sol. Energy Mater. Sol. Cells. 77(4), 393–403 (2003)Google Scholar
  54. 54.
    Rebouta, L., Pitães, A., Andritschky, M., Capela, P., Cerqueira, M.F., Matilainen, A., Pischow, K.: Optical characterization of TiAlN/TiAlON/SiO2 absorber for solar selective applications. Surf. Coatings Technol. 211, 41–44 (2012)Google Scholar
  55. 55.
    Carlsson, B., Möller, K., Köhl, M., Frei, U., Brunold, S.: Qualification test procedure for solar absorber surface durability. Sol. Energy Mater. Sol. Cells. 61(3), 255–275 (2000)Google Scholar
  56. 56.
    Duffie, J.A., Beckman, W.A.: Solar Engineering of Thermal Processes, 4th Edit edn. John Wiley & Sons, New Jersey (2013)Google Scholar
  57. 57.
    Whittaker, A.J., Taylor, R., Tawil, H.: Thermal transport properties of carbon-carbon fibre composites I. Thermal diffusivity measurements. Proc. R. Soc. Lond. A. 430, 167–181 (1990)Google Scholar
  58. 58.
    Baxter, R., Rawlings, R., Iwashita, N., Sawada, Y.: Effect of chemical vapor infiltration on erosion and thermal properties of porous carbon/carbon composite thermal insulation. Carbon. 38(3), 441–449 (2000)Google Scholar
  59. 59.
    Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids, 2nd edn. Oxford University Press, London (1964)Google Scholar
  60. 60.
    Sun, K., Stroscio, M.A., Dutta, M.: Graphite C-axis thermal conductivity. Superlattice. Microst. 45(2), 60–64 (2009)Google Scholar
  61. 61.
    Manocha, L.M., Warrier, A., Manocha, S., Sathiyamoorthy, D., Banerjee, D.: Thermophysical properties of densified pitch based carbon/carbon materials-I. Unidirectional composites. Carbon. 44, 480–487 (2006)Google Scholar
  62. 62.
    Bertolotti, M., Ferrari, A., Liakhou, G.L., Li Voti, R., Marras, A., Ezquerra, T.A., Balta-Calleja, F.J.: Thermal anisotropy of polymer carbon fiber composites as revealed by photodeflection methods. J. Appl. Phys. 78(9), 5706–5712 (1995)Google Scholar
  63. 63.
    Leahu, G., Li Voti, R., Larciprete, M.C., Sibilia, C., Bertolotti, M., Nefedov, I., Anoshkin, I.V.: Thermal characterization of carbon nanotubes by Photothermal techniques. Int. J. Thermophys. 36(5–6), 1349–1357 (2015)Google Scholar
  64. 64.
    ASTM G173–03(2012): Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface, ASTM International, West Conshohocken, PA (2012)Google Scholar
  65. 65.
    Leon, M.A., Kumar, S.: Mathematical modeling and thermal performance analysis of unglazed transpired solar collectors. Sol. Energy. 81(1), 62–75 (2007)Google Scholar
  66. 66.
    Russell, F.: Heat transfer analysis and modeling of a parabolic trough solar receiver implemented in engineering equation solver. Natl. Renew. Energy Lab., Report No. NREL/TP-550-34169 (2003)Google Scholar
  67. 67.
    Ho, C.K., Pacheco, J.E.: Derivation of a Levelized cost of coating (LCOC) metric for evaluation of solar selective absorber materials. Energy Procedia. 69, 415–423 (2015)Google Scholar
  68. 68.
    Kalogirou, S.A.: Solar thermal collectors and applications. Prog. Energy Combust. Sci. 30(3), 231–295 (2004)Google Scholar
  69. 69.
    Burlafinger, K., Vetter, A., Brabec, C.J.: Maximizing concentrated solar power (CSP) plant overall efficiencies by using spectral selective absorbers at optimal operation temperatures. Sol. Energy. 120, 428–438 (2015)Google Scholar
  70. 70.
    Chen, Z., Boström, T., Nguyen, Q.: Carbon nanotube spectrally selective solar absorbers. Proceedings of the EuroSun 2014 Conference, pp. 1–7 (2015)Google Scholar
  71. 71.
    Moon, J., Kim, T.K., VanSaders, B., Choi, C., Liu, Z., Jin, S., Chen, R.: Black oxide nanoparticles as durable solar absorbing material for high-temperature concentrating solar power system. Sol. Energy Mater. Sol. Cells. 134, 417–424 (2015)Google Scholar
  72. 72.
    Pilling, M.W., Yates, B., Black, M.A., Tattersall, P.: The thermal conductivity of carbon fibre-reinforced composites. J. Mater. Sci. 14(6), 1326–1338 (1979)Google Scholar
  73. 73.
    Nan, C.W., Birringer, R., Clarke, D.R., Gleiter, H.: Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81(10), 6692–6699 (1997)Google Scholar
  74. 74.
    Bruggemann, D.A.G.: Berechnung verschiedener physikalischer Konstanten von heterogenen substanzen. Ann. Phys. 24, 636–679 (1935)Google Scholar
  75. 75.
    Ordonez-Miranda, J., Alvarado-Gil, J.J.: Thermal conductivity of nanocomposites with high volume fractions of particles. Compos. Sci. Technol. 72(7), 853–857 (2012)Google Scholar
  76. 76.
    Nan, C.W., Liu, G., Lin, Y., Li, M.: Interface effect on thermal conductivity of carbon nanotube composites. Appl. Phys. Lett. 85(16), 3549–3551 (2004)Google Scholar
  77. 77.
    Huang, H.S., Ganguli, S., Roy, A.K.: Prediction of the transverse thermal conductivity of pitch-based carbon fibers. J. Compos. Mater. 48(11), 1383–1390 (2013)Google Scholar
  78. 78.
    Pradere, C., Batsale, J.C., Goyheneche, J.M., Pailler, R., Dilhaire, S.: Thermal properties of carbon fibers at very high temperature. Carbon. 47(3), 737–743 (2009)Google Scholar
  79. 79.
    Jie, C., Xiang, X., Peng, X.: Thermal conductivity of unidirectional carbon/carbon composites with different carbon matrixes. Mater. Des. 30(4), 1413–1416 (2009)Google Scholar
  80. 80.
    Feng, Z., Fan, Z., Kong, Q., Xiong, X., Huang, B.: Effect of high temperature treatment on the structure and thermal conductivity of 2D carbon/carbon composites with a high thermal conductivity. New Carbon Mater. 29(5), 357–362 (2014)Google Scholar
  81. 81.
    Guan, K., Wu, J., Cheng, L.: Modeling of thermal conductivity of CVI-densified composites at fiber and bundle level. Materials (Basel). 9(12), (2016)Google Scholar
  82. 82.
    Spinnler, M., Winter, E.R.F., Viskanta, R.: Studies on high-temperature multilayer thermal insulations. Int. J. Heat Mass Transf. 47(6–7), 1305–1312 (2004)Google Scholar
  83. 83.
    Gong, P., Buahom, P., Tran, M.P., Saniei, M., Park, C.B., Pötschke, P.: Heat transfer in microcellular polystyrene/multi-walled carbon nanotube nanocomposite foams. Carbon. 93, 819–829 (2015)Google Scholar
  84. 84.
    Zhao, J.J., Duan, Y.Y., Wang, X.D., Wang, B.X.: Experimental and analytical analyses of the thermal conductivities and high-temperature characteristics of silica aerogels based on microstructures. J. Phys. D. Appl. Phys. 46(1), 15304 (2013)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • J. D. Macias
    • 1
    Email author
  • J. Bante-Guerra
    • 2
  • F. Cervantes-Alvarez
    • 2
  • G. Rodrìguez-Gattorno
    • 2
  • O. Arés-Muzio
    • 2
  • H. Romero-Paredes
    • 1
  • C. A. Arancibia-Bulnes
    • 3
  • V. Ramos-Sánchez
    • 4
  • H. I. Villafán-Vidales
    • 3
  • J. Ordonez-Miranda
    • 5
  • R. Li Voti
    • 6
  • J. J. Alvarado-Gil
    • 2
  1. 1.Universidad Autónoma Metropolitana-IztapalapaMéxico D.FMexico
  2. 2.Departamento de Fisica AplicadaCINVESTAV-Unidad MeridaMéridaMexico
  3. 3.Instituto de Energías RenovablesUniversidad Nacional Autónoma de MéxicoTemixcoMexico
  4. 4.Facultad de QuímicaUniversidad Autónoma de ChihuahuaChihuahuaMexico
  5. 5.Institut PprimeUniversite de Poitiers, ISAE-ENSMAChasseneuilFrance
  6. 6.Dipartimento di Scienze di Base ed Applicate per l’IngegneriaSapienza Universita di RomaRomeItaly

Personalised recommendations